在等差数列{an}中,a4 a7=5
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 13:49:23
A1+A6=12=A4+A3A4=7∴A3=5∴d=A4-A3=2∴An=A3+(n-3)*d=2n-1
还说明sn=n(a1+an)/2=0sn是关于n的没有常数项的一元二次函数,现在s(0)=s(n),可得对称轴为n/2如果n/2是整数,即n为偶数,最大值在n/2取到;如果n为奇数,在(n+1)/2o
1、设公比为qa4/q+a7*q=124a4*a7=-512设x=a4/q,y=a7*qx+y=124x*y=-512(x+y)^2=15376(x-y)^2=(x+y)^2-4xy=17424x-y
an=Sn-Sn-1=4n+1(n>=2),a1=2*1+3=5,满足上式,an通项就是4n+1,即证实等差数列
S10=(a1+a10)*10/2145=(a1+28)*5a1=1公差d=(a10-a1)/(10-1)=3an=a1+(n-1)d=1+3(n-1)=3n-2
在等差数列{an}中,a1=10,公差为d,(1)由题意,S10=10a1+45d>0,得d>-20/9;S11=11a1+55d
1.求等差数列2,5,8,...,47中各项的和.你要利用好基本的性质、公式和定理等等差数列:2,5,8,...,47明显看到题目给出的a1=2;公差d=5-2=3那么an=a1+(n-1)*d=3n
∵a1=13,a2+a5=4,∴2a1+5d=4,即d=23,∵an=33=a1+(n-1)d,∴13+23(n−1)=33,解得n=50,故答案为:50
a3=a1+2da11=a1+10d所以a3+a11=a1+2d+a1+10d=2a1+12d=2(a1+6d)=6所以a1+6d=3又Sn=n(a1+an)/2所以S13=13(a1+a13)/2=
a1+...a100=0则50*(a50+a51)=0即a50+a51=0由于a10,a500,因此b1,.b48都小于0b49=a49a50a51>0b50=a50a51a520,b51以上都大于0
∵|a3|=|a9|且d0a9
a8+a14=2a1+20d=0a1=-10d0Sn=na1+n(n-1)d/2=-10nd+n^2d/2-nd/2=(d/2)*n^2-(21d/2)n,对称轴是n=21/2=10.5所以,当n=1
n+Sn=2an,所以1+s1=2a1=2s1即s1=a1=1且n+1+S(n+1)=2a(n+1)相减得1+a(n+1)=2a(n+1)-2ana(n+1)=2an+1a(n+1)+1=2an+2=
S7=a1+a2+.+a7=(a1+a7)*7/2又有:a1+a7=a4+a4=2a4=14根据公式am+an=al+aq其中m+n=l+q则:S7=49
是等比数列吧?3a(n+1)-an=03a(n+1)=ana(n+1)/an=1/3,等比1/3a1=2an=2/3^(n-1)=6/3^n
da9|a3|=|a9|,a3>0,a90使前n项的和sn取得最大值的正整数n的值是n=5和n=6
a7+a15=0a8+a14=a9+a13=a10+a12=2a11=0前11项均不大于0所以S10=S11均属于最小
A1+A2+A3=15得到A2=5;An+An-1+An-2=78得到An-1=26;Sn=(A1+An)*n/2=(A2+An-1)*n/2代入解得n=10S1=5得到A1=5当n>1时,An=Sn
a3^2+a8^2+2a3a8=9(a3+a8)^2=9因为等差数列an的各项都是负数所以a3+a8=-3所以S10=(a1+a10)*10/2=5(a1+a10)=5(a3+a8)=5*(-3)=-
第1问:d=(a17-a1)/(17-1)=(-12+60)/16=3an=a1+(n-1)d=-60+3(n-1)=3n-63第2问:设an≥0则3n-63≥0n≥21所以该数列前20项均为负,从2