在矩形ABC中,E,F分别是边AB,CD上的点,AE=CF,求∠BEF的度数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 14:32:01
在矩形ABC中,E,F分别是边AB,CD上的点,AE=CF,求∠BEF的度数
如图,锐角△ABC中,AD是BC边上的高,矩形EFGH的顶点E,H分别在AB,AC上,F,G在BC边上,AD与EH相交于

设EF=x,则EH=2x∵EH∥BC∴△AEH∽△ABC2x/10=5-x/5x=5/2EF=5/2EH=5再问:第一小题百度上有,我的重点不在第一小题,第二小题和第三小题呢

已知:如图,在三角形ABC中角ACB=90度,D、E、F分别是AB、AC、BC的中点,求证:四边形CDEF是矩形

D,E分别为AB,AC中点,则DE为三角形中位线,所以DE//BC且DE=1/2BCDE平行等于BC则四边形CDEF为矩形(有一个定理来着)

如图在矩形ABCD中,AC,BD相交于点O,E,F分别是OA,OD的中点

∵E、F分别是OA、OD中点∴EF是△AOD的中位线∴EF∥AD∵ABCD是矩形∴AD∥BC∴EF∥BC

已知:如图,在Rt△ABC中,∠C=Rt∠,点D,E,F分别是AB,BC,CA边上的中点.求证:四边形CEDF是矩形

证明:∵点D,E,F分别是AB,BC,CA边上的中点∴DF,DE是△ABC的中位线∴DF‖BC,DE‖AC∴四边形CEDF是平行四边形∵∠C=90°∴四边形CEDF是矩形

已知;如图,在矩形ABCD中M,N分别是边AD,BC的中点,E,F分别是线段BM,CN的中点.

(1)菱形连接MN,由矩形对称性可知MN为其对称轴容易证明Rt△MNB≌Rt△MNC,且NE,NF是直角三角形斜边上的中线∴有ME=EN=NF=FM,∴四边形MENF是菱形(2)对角线相等的菱形是正方

如图,在矩形ABCD中,E,F分别是边BC,AB上的点,且EF=ED,EF⊥ED.求证:AE平分∠BAD.

做EG⊥AD于G∵ABCD是矩形∴∠DGE=∠B=90°……(1)∠BEG=90°∵EF⊥ED∴∠DEF=∠DEG+∠GEF=90°∠BEG=∠FEB+∠GEF=90°∴∠DEG=∠FEB……(2)∵

已知,如图,在矩形ABCD中,E,F分别是边BC,AB上的点,且EF=ED,EF⊥ED,

由EF=ED,EF⊥ED,得∠BEF+∠CED=90°,因∠CDE+∠CED=90°,所以∠BEF=∠CDE,所以△BFE≌△ECD,所以BE=CD=4,BF=CE=3,AF=1BE=AB,∠BAE=

如图,在矩形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.求证:四边形EFGH是菱形.

证明:连接BD,AC.∵矩形ABCD中,E、F、G、H分别是AD、AB、BC、CD的中点,∴AC=BD,∵EF为△ABD的中位线,∴EF=12BD,EF∥BD,又GH为△BCD的中位线,∴GH=12B

如图,在△ABC中,AM是高,D,G分别在AB,AC上,E,F在BC上,四边形DEFG是矩形,AM=6,BC=12,若设

(1)根据题意得AN=AM-MN=6-x,∵四边形DEFG是矩形,∴DG∥BC,∴△ADG∽△ABC,∴DG:BC=AN:AM,即y:12=(x-6):6,∴y=2x-12(0<x<6);(2)∵当D

关于三角形的中位线1.求证:顺次连接对角线互相垂直的四边形中点所得四边形是矩形2.在△ABC中,D,E,F分别是AB,A

1证明四边形被两条对角线分为2个三角形在一个三角形里中位线定理2边中点的连线平行于对角线同理另一个三角形理也是则围成的四边形是平行四边形再看那个平行四边形里被分成四块用对角线垂直可以证得它的角90°2

已知如图在△ABC中,D、F、E分别是各边中点,AH是边BC上的高.

E、F是所在边中点,所以EF//BC三角形AHB是直角三角形且F是AC中点,则FH=1/2AB=FB又D、E是所在边中点,所以DE=1/2AB且DE//FB所以DE=HF且DE不平行于FH由DE不平行

已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.

证明:∵四边形ABCD是矩形,∴∠B=∠C=∠BAD=90°,AB=CD,∴∠BEF+∠BFE=90°.∵EF⊥ED,∴∠BEF+∠CED=90°.∴∠BFE=∠CED.∴∠BEF=∠EDC.在△EB

如图,在矩形ABCD中,E、F分别是AD,AB上的点,且EF=EC,EF⊥EC.求证:BE评分∠ABC

从E点作BC的垂线,垂足为G,则有∠GEC+∠FEG=90°,又有∠AEF+∠FEG=90°,所以∠GEC=∠AEF,又有EF=EC,即可推断出直角三角形EAF全等于直角三角形EGC,所以AE=EG,

如图,矩形ABCD中,E,F分别在BC,AD上,矩形ABCD~矩形ECDF且AB=2 S 矩形ABCD=3S矩形ECDF

S矩形ABCD=3S矩形ECDF推出AF=2FD——(1)矩形ABCD~矩形ECDF且AB=2推出AF*FD=FE*FE=AB*AB=4(2)设FD=x,则由(1)得AF=2x未知数代入(2)中,2x

如图,矩形ABCD中,E,F分别在BC,AD上,矩形ABCD~矩形ECDF,AB=2,S矩形ABCD=9S矩形ECDF,

答案=12求解如下:答:因为:S矩形ABCD=9S矩形ECDF所以:AB*BC=9*EC*CD,又因为:AB=CD=2所以:BC=9EC(1)因为:矩形ABCD~矩形ECDF所以:AB/EC=BC/C

矩形ABCD中,E、F分别在BC、AD上,矩形ABCD相似矩形ECDF,且AB=2,S矩形ABCD=4S矩形ECDF,

S矩形ABCD=4S矩形ECDF==>相似比为2矩形ABCD相似矩形ECDF==>BC:CD=相似比2CD=AB=2BC=4面积=2*4=8

已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.

∠BEF=∠CDE∠B=∠CEF=ED△BEF≌△CDEBE=CDCD=ABBE=AB∠BAE=∠BEA=45°AE平分∠BAD