在直角系坐标中,四边形abco是正方形,已知点c的坐标为(根号三,1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 04:57:18
(1)由|OA|=|AB|=|BC|=√(3^2+4^2)=5得B(8,4),C(11,0).(2)因为抛物线过点(0,0),(11,0),因此设抛物线解析式为y=ax(x-11),将A(3,4)坐标
在平面直角坐标系中,点O为坐标原点,直线y=2x+4交x轴于点A,交y轴于点B,四边形ABCO是平行四边形,所以有A点坐标为(-2,0),B点坐标为(0,4),C点坐标为(2,4).(1)求m的值;直
CD=CO,D(-1,-1)直线OD:y=k'x-1=k'*(-1)k'=1射线OD:y=x(x
这道是2012年哈尔滨数学中考最后一题,具体的答案可以去百度文库找下,搜索2012哈尔滨数学即可1)方法一:先根据直线y=2x+4求出点A、B的坐标,从而得到OA、OB的长度,再根据平行四边形的对边相
(1)∵点A的坐标为(-3,4)∴OA=5∵四边形ABCO是菱形∴点C的坐标为(5,0)设直线AC的函数关系式为y=kx+b把x=-3,y=4;x=5,y=0分别代入y=kx+b中得:0=5k+b;4
(1)∵矩形ABCO,B点坐标为(4,3)∴C点坐标为(0,3)∵抛物线y=-1/2x2+bx+c经过矩形ABCO的顶点B、C,∴c=3-8+4b+c=3解得:c=3b=2∴该抛物线解析式y=-1/2
解:(1)因为四边形ABCO是菱形,∠AOC=60º,所以,∠AOB=30º.连接AC交OB于M,则OM=1/2×OB,AM⊥OB.所以AM=tan30º×OM=4.所以
1、根据勾股定理,|OA|=5,则|OC|=5,故C点坐标为(5,0),AC方程为:(y-0)/(x-5)=(4-0)/(-3-5),x+2y=5.2、当在AB边时,|PB|=|AB|-2t=5-2t
由已知易得:①A(-3,4)B(2,4)C(5,0)②AB=BC=CO=OA=5③直线AC的解析式为:y=-1/2x+5/2④H(0,4)M(0,5/2)⑤AC=4√5(1)显然存在符合条件的点P.连
(1)a(-3,4)、c(5,0)、b(2,4)ab=5(勾股定理得)设y=kX+b,带入a、c两点,得ac解析式y=-1/2X+5/2(2)因为四边形abco是菱形,所以ob⊥ac并平分,所以o点就
2,首先应该得到的有M点坐标(0,2.5),B(2,4),C(5,0)当0≤t≤2.5时,P在AB上,BP=5-2tS=1/2*BP*MH=1/2*(5-2t)*1.5=-1.5t+3.75当2.5≤
题设肯定不足,你确定全部发上来了?再问:我看了看,我错了,少了一个条件。。。。。。再答:A(0,10) B(9,10) C(19,0)S梯形=(9+19)×10/2=140S△ABC=|0×(10-
(1)A(0,4)B(4,4)过F做BC垂线交于H由题可知正方形边长4推出BE=EF=4根号3/3三角形EFH中∠FEH=∠AEB=60°由勾股定理FH=2EH=2根号3/3则F坐标(2,4-2根号3
√(a-4)+a+b-2√ab=0等价于√(a-4)+(√a-√b)2=0(这里的2为平方)即a=4,b=4OB=4√2
确认如下几点:1.B的坐标是(0,8√3),B点在Y轴上.2.a(1《a《3)是否a(1≤a≤3).3.t(0BP,QP与OB的交点在OB方向的延长线上.∵OB=8√3>4√3/3=OD∴QP与OB的
过D作DF⊥AF于F,∵点B的坐标为(1,3),∴AO=1,AB=3,根据折叠可知:CD=OA,而∠D=∠AOE=90°,∠DEC=∠AEO,∴△CDE≌△AOE,∴OE=DE,OA=CD=1,设OE
这道是2012年哈尔滨数学中考最后一题,具体的答案可以去百度文库找下,搜索2012哈尔滨数学即可1)方法一:先根据直线y=2x+4求出点A、B的坐标,从而得到OA、OB的长度,再根据平行四边形的对边相