在直角坐标系中ob=1p为动点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:45:56
(1)分两种情况:当∠OPQ=90°时,Q(4-t,0),PB=5-3t,作PM⊥x轴,利用相似形可得P(12t/5,-9t/5+3),由OP^2+PQ^2=OQ^2,即OM^2+PM^2+PM^2+
(1)x^2/2+y^2=1(x≠±根号2,y≠0)(2)设l的方程为:x=ty+1与x^2/2+y^2=1联立消去x得:(ty+1)^2+2y^2-2=0即(t^2+2)y^2+2ty-1=0设M(
(1)、A为(0,3)、B为(4,0);(2)、AP=t,OP=OA-AP=3-t,P点坐标为(0,3-t),AB=v(OA^2+OB^2)=v(3^2+4^2)=5,——》sin∠B=OA/AB=3
1:PA=(m^2+(n-2)^2)1/2,PB=|n|由P在曲线上,将n=1/4m^2+1带入PA,得到PA=|n|=PB2:(1)根据两点之间直线最短,PB+PC最小值出现在P点为BC直线同抛物线
(1)证明:设E(x1,y1),F(x2,y2),△AOE和△FOB的面积为S1、S2由题意得y1=k/x1,y2=k/x2∴S1=x1y1/2=k/2,S2=x2y2/2=k/2∴S1=S2,即△A
∵ΔABC是等边三角形,∴∠ABD=120°,AB=BC=2,BD=1,当C在BC延长线上时,∠ACP=120°,①AC/CP=AB/AD=2,∴CP=1,∴P(2,0),②当AC/CP=AD/AB=
考点:一次函数综合题.专题:动点型;分类讨论.分析:(1)可过B作x轴的垂线,设垂足为E,在直角三角形OBE中,用∠BOE的三角函数值即可求出B点的坐标.(2)当D落在x轴上时,M为OB的中点,D为O
OA=OB=9,∠AOB=90°.∴∠OAB=∠OBA=45°.作DE垂直OA于E(如图),则DE=AE.∵∠CED=∠POC=90°;∠1=∠2(均为∠3的余角);CD=CP.∴⊿CED≌⊿POC(
PQ‖AB,t:5=(6-2t):6,t=15/8△OPQ与△BQA相似,t:2t=(6-2t):5,t=7/4,BQ=2t=7/2
P:X=2cosαY=sinαl:X-Y+1=0距离d=|2cosα+sinα+1|/根号2d(max)=(根号5+1)/根号2直线参数方程Y=t/根号2X=t/根号2+1(t/根号2)^2/4+(t
解1、在平面直角坐标系中,动点P到两条直线3x-y=0与x+3y=0的距离之积等于4,则P到原点距离的最小值为_4___2、若圆x^2+y^2=R^2(R>0)和曲线|x|/3+|y|/4=1恰有6个
Σ(n=0到∞)x^n=lim(1-x^(n+1))/(1-x)x趋于∞当|x|
本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求抛物线的解析式,以及等腰三角形的性质.在求有关动点问题时要注意分析题意分情况讨论结果.答案http://www.qiujieda.com/ex
OA=1,OB=-1则OP=1P点轨迹是圆,圆心(0,0)半径为1方程为x^2+y^2=1
题主要是把两条直线3x-y=0与x+3y=0看作两条新的坐标轴,构建新的直角坐标系,则动点P到两条直线3x-y=0与x+3y=0的距离之积等于4即动点P的轨迹为xy=4故P(x,y)到原点的距离d=√
三角形A0B面积的最大值是1.
∵在直角坐标系中,点P(-2,3),∴OP=(−2)2+(3)2=5.故答案为:5.
设P(x,y)由已知得M(0,y),N(x,-y),∴MN=(x,-2y),∴OP•MN=(x,y)•(x,-2y)=x2-2y2,依题意知,x2-2y2=4,因此动点P的轨迹方程为x2-2y2=4.
解题思路:解:由题意,双曲线x2-y2=1的渐近线方程为x±y=0,因为点P到直线x-y+1=0的距离大于c恒成立,所以c的最大值为直线x-y+1=0与直线x-y=0的距离.解题过程: