在直线y=-2分之1x 3上横坐标是-4的点的坐标
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 18:41:20
根据题意得f′(x)=3x2,设切点(m,n)则曲线y=f(x)上点(m,n)处的切线的斜率k=3m2,∴3m2=1,m=±33,故切点的坐标有两解.由直线的方程可得中斜率等于1的直线有两条,故选C.
曲线y=x3+x-2求导可得y′=3x2+1设切点为(a,b)则3a2+1=4,解得a=1或a=-1切点为(1,0)或(-1,-4)与直线4x-y-1=0平行且与曲线y=x3+x-2相切的直线方程是:
曲线y=x3+x-2求导可得y′=3x2+1设切点为(a,b)则3a2+1=4,解得a=1或a=-1切点为(1,0)或(-1,-4)与直线4x-y-1=0平行且与曲线y=x3+x-2相切的直线方程是:
数学之美团为你解答(1)f(x)=x^3-3ax+b,f'(x)=3x^2-3a,f(x)在(2,f(2))点与y=8相切,说明f'(2)=0,即3*4-3a=0,且f(2)=8-6a+b=8,可以解
对该函数求导得y=3X2,将x=1带入得到切线斜率k=3再用点斜式得切线方程为3x-y-2=0在坐标系中作出切线与x=2的图像可得面积为8/3
L1:y=-2x+3交y轴于点A,即A的横坐标为0,则y=2*0+3=3.所以A(0,3)L2:y=-2分之1x+2分之3交x轴于点B则y=-1/2x+3/2=0得x=3.所以B(3,0)两直线相交,
对c求导,y`=3x^2-1,Q处的切线平行于y=11x-1,说明y`=3x^2-1=11,x=±2,Q为(2,8)或(-2,-4),切线方程分别为y=11x-14,y=11x+18
平行则x系数相同所以y=-x/2+by=2x+1中,x=0,y=0+1=1所以y=-x/2+b过(0,1)所以1=0+b,b=1所以是y=-x/2+1
f(x)=x³-3ax+bf'(x)=3x²-3a因为曲线y=f(x)在点(2,f(2))处与直线y=8相切所以①12-3a=0a=4②f(x)=x³-12x+b代入x=
设所求的直线方程为y=-3x+m,切点为(n,n3+3n2-1),则由题意可得3n2+6n=-3,∴n=-1,故切点为(-1,1),代入切线方程y=-3x+m可得m=-2,故设所求的直线方程为y=-3
导数的应用.求一阶导3x^2+6ax+3b,x=1处的切线与直线6x+2y+5=0平行,说明斜率是-3.把x=1带入一阶导为-3.在x=2处有极值,说明把x=2带入一阶导为0.
(1)∵函数y=x3+3ax2+3bx+c,∴y'=3x2+6ax+3b,∵函数y=x3+3ax2+3bx+c在x=2处有极值,∴当x=2时,y′=0,即12+12a+3b=0,①∵函数图象在x=1处
由y=x3+x-2,得y′=3x2+1,∵切线平行于直线y=4x-1,∴3x2+1=4,解之得x=±1,当x=1时,y=0;当x=-1时,y=-4.∴切点P0的坐标为(1,0)和(-1,-4),故选:
曲线y=x3+x-2求导可得y′=3x2+1设切点为(a,b)则3a2+1=4,解得a=1或a=-1切点为(1,0)或(-1,-4)与直线4x-y-1=0平行且与曲线y=x3+x-2相切的直线方程是:
设切点为P(a,b),函数y=x3+3x2-5的导数为y′=3x2+6x切线的斜率k=y′|x=a=3a2+6a=-3,得a=-1,代入到y=x3+3x2-5,得b=-3,即P(-1,-3),y+3=
设切点为p(a,b),函数y=x3+3x2-5的导数为y′=3x2+6x,又∵与2x-6y+1=0垂直的直线斜率为-3,∴切线的斜率k=y′=3a2+6a=-3,解得a=-1,代入到y=x3+3x2-
设切点为p(a,b),函数y=x3+3x2-5的导数为y′=3x2+6x,又∵与2x-6y+1=0垂直的直线斜率为-3,∴切线的斜率k=y′=3a2+6a=-3,解得a=-1,代入到y=x3+3x2-
设所求的直线方程为y=-3x+m,切点为(n,n3+3n2-1)则由题意可得3n2+6n=-3,∴n=-1,故切点为(-1,1),代入切线方程y=-3x+m可得m=-2,故设所求的直线方程为3x+y+
设P0点的坐标为(a,f(a)),由f(x)=x3+x-2,得到f′(x)=3x2+1,由曲线在P0点处的切线平行于直线y=4x,得到切线方程的斜率为4,即f′(a)=3a2+1=4,解得a=1或a=
A-B=(x3+2y3-xy2)-(﹣y3+x3+2xy2)=x³+2y³-xy²+y³-x³-2xy²=3y³-3xy²