在正方形abcd内有一点p,当P到顶点A.B.C三点的距离之和最小,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:55:58
PE+PD最小就是BE的长,BE就是正方形的边长,∴S正方形ABCD=25.
这题是做对称点以AC为轴做点D的对称点F易证 点F与点B重合所以 DP = BP所以 DP + 
把△BPC绕B点逆时针旋转90°到BP'A的位置,∠PBP'=90° BP=BP'=√(2)∴PP'=2P'A=PC=1PA=
过B作BE垂直PB,使BE=PB,连接AE,PE因为正方形ABCD所以角ABC=90度,BA=BC因为BE垂直PB所以角EBP=90度所以角ABE=角CBP因为BE=PB,BA=BC所以三角形ABE全
因为ABCD是正方形,所以D跟B关于AC对称.所以BP等于DP.所以PEPD=PEBP.要使PEBP最小.即B,P,E三点共线.PEBP=BE=AB=4,所以PEPD的最小值为4.
连接PB,则PD=PB,那么PD+PE=PB+PE,因此当P、B、E在一直线的时候,最小,也就是PD+PE=PB+PE=BE=AB=4
使P点是BE与AC的交点则可,这时PE+PD[(最小值)]=BE=AB=√(12)=2√(3),证明:连接BD,则AC是BD的垂直平分线,∴PD=PB,∴PD+PE=PB+PE=BE,在AC上任取异于
根号下12再问:能给详细的做法吗?再答:连接PB,PD=PB,所以PB+BE的最小值就是BE.
有正方形ABCD的对称性可知PD=PB所以PD+PE=PB+PE当P为AC与BE交点时,PB+PE最小,且PB+PE=BE因为三角形EBC是等边三角形所以BE=BC=10所以PD+PE的最小值为10
∵正方形ABCD的面积为9,∴AB=3,∵△ABE是等边三角形,∴AB=BE=3,∵四边形ABCD是正方形,∴点B即为点D关于AC的对称点,∴BE即为PD+PE的最小值,∴PD+PE的最小值为:3
d.12再问:请说明理由再答:再答:再答:再答:再答:再问:那个为什么DE'最短呢再答:纠正一下,be为最短路径的路径长。点p在ac上,就作d关于ac的对称点,又因ac为对角线、abcd为正方形,d的
因为对称所以PD+PE=PB+PE这样看没问题吧然后在△PBE中,两边之和大于第三边所以只有PB,PE在一条直线上才能使PB+PE最小因为P是任意一点所以这个时候P点应为BE与AC的交点.
∵ABCD是正方形∴AC⊥BDAB=AD=A=BC=CD=√16=4∵△ABE是等边三角形∴AB=BE=AE=4要使PD+PE的和最小以AC为对称轴,做D的对称点,由于BD⊥AC所以D的对称点恰好是B
这题是做对称点以AC为轴做点D的对称点F易证 点F与点B重合所以 DP = BP所以 DP + 
∵ABCD是正方形∴AC⊥BD AB=AD=A=BC=CD=√10∵△ABE是等边三角形∴AB=BE=AE=√10要使PD+PE的和最小以AC为对称轴,做D的对称点,由于BD⊥AC所以D的对
如图,正方形边长为4,D的对称点为B,△ABE是等边三角形,所以PD+PE=D'E=4
这是一道应该用“旋转思想”解决的问题.如图,将△BPC绕点B逆时针旋转90°到△BMA,则BM=BP=√2,AM=PC=1,∠MBP=90°,∠BPC=∠BMA∴△MBP是等腰直角三角形∴PM=2,∠
(1)∵四边形ABCD为正方形,∴∠ABC=∠DCB=90°,AB=CD,∵BP=PC,∴∠PBC=∠PCB,∴∠ABP=∠DCP,又∵AB=CD,BP=CP,∴△ABP≌△DCP(SAS).(2)设
igxiong008是对的~