在正方形abcd中点p是对角线bd上的一点,点e在ad的延长线上

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:36:56
在正方形abcd中点p是对角线bd上的一点,点e在ad的延长线上
如图所示,在正方形abcd中,P是对角线AB上的任意一点

四点共圆有三个性质:(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;(2)圆内接四边形的对角互补;(3)圆内接四边形的外角等于内对角.以上性质可以根据圆周角等于它所对弧的度数的一半进行证明.此

如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,

这题是做对称点以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP + 

在正方形abcd中,o是对角线ac的中点,p是对角线ac上一动点,过点P作PE⊥PB

⑴  上图.⊿PSE≌⊿PTB﹙ASA﹚,∴PE=PB.. ⊿PBE等腰直角.∠EBF=45º,⊿BCE绕B逆时针旋转90°,到达⊿BAG. &nbs

正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PE⊥PB,交直线CD于点E,如图1,当点P与

(1)过p做PM垂直bc,PN垂直DC,角PEC=角PBC(PBCE,四点共圆,或者转角也可以)又pn=pm所以三角形pmb全等三角形pne(2)AF+CE=EF三角形cbe逆时针旋转90°,证三角形

正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,则PD+PE的最小值为

因为ABCD是正方形,所以D跟B关于AC对称.所以BP等于DP.所以PEPD=PEBP.要使PEBP最小.即B,P,E三点共线.PEBP=BE=AB=4,所以PEPD的最小值为4.

正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,则PD+PE的最小值多

连接PB,则PD=PB,那么PD+PE=PB+PE,因此当P、B、E在一直线的时候,最小,也就是PD+PE=PB+PE=BE=AB=4

如图,正方形ABCD的面积为12,三角形ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE

使P点是BE与AC的交点则可,这时PE+PD[(最小值)]=BE=AB=√(12)=2√(3),证明:连接BD,则AC是BD的垂直平分线,∴PD=PB,∴PD+PE=PB+PE=BE,在AC上任取异于

正方形abcd中,点e是ab的中点,在对角线ac上找一点p,使pe+pb最短

作另一条对角线BD,连接ED,交AC于P点,P点为所求.且PD=PB,则PE+PB=PE+PD=ED﹙两点之间,线段最短﹚

正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点.

①求证:∠PDE=∠PED;证明:∵四边形ABCD是正方形∴AB=ADAC平分∠BAD和∠BCDAC⊥BD∴∠BAC=∠DAC=∠ACD=∠CDB=45°又∵AP是公共边∴△BAP≌△DAP∴BP=D

边长为4的正方形ABCD中,点o是对角线AC的中点,P是对角线AC上一动点.

 提示:⑴过P作BC的垂线,垂足为G.∵P是AC上的点,∴PG=PF,又 ∠BPG+∠EPG=∠RPG+∠EPF=90°,  将⊿PBG绕P逆时针旋转90°;与

如图,正方形ABCD的边长为2,E是CD的中点,在对角线AC上有一点P,则PD+PE的最小值是______.

连接BE,∵四边形ABCD是正方形,E是CD的中点,∴点B、D关于直线AC对称,CE=12CD=1,∴BE即是PD+PE的最小值,∴BE=BC2+CE2=22+12=5.故答案为:5.

在正方形ABCD中,对角线AC=10,P是AB边上任意一点,则P到对角线AC,BD的距离之和为多少?

你画个图好了阿因为正方形ABCD,所以对角线隔开的脚都是45度的,比如角CAB=45度做p到AC的垂线,交于M,做p到BD的垂线,交于N,设AC和BD相交于O点,则四边形PMON为矩形.所以PN=MO

如图所示,正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过

连接PD①∵AB=ADAP=AP∠BAP=∠DAP=45°∴△APB≌△APD∴∠ABP=∠ADP∠PBC=∠PDF∵PE⊥PB∴在四边形BCEP中∠PBC+∠PEC=180°∵∠PEF+∠PEC=1

如图,边长是2的正方形ABCD的各个顶点都在圆O上,AC是对角线,P为边CD的中点,延长AP交圆于点E.

解析:(1)圆周角相等∴∠AED=∠ACD=45°(2)不全等的三角形很多,不全等的相似三角形有这个:△APC和△DPE相似,但是不全等,证明:∠PAC=∠PDE,∠PCA=∠PED∴△PAC∽△PD

如图,在边长为2的正方形ABCD中,点Q是BC中点,点P为对角线AC上一动点,连接PB、PQ,

BQ=BC/2=1,即BQ为定值.∵点B和D关于AC对称,则PD=PB.∴PB+PQ=PD+PQ,故当点P在线段DQ上时,PD+PQ最小.DQ=√(CQ²+CD²)=√(1+4)=

正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点

题目显然有问题.DF怎么可能与CF垂直呢? F点在CD上面.应是CF=DF吧.(1)如图,连接PD,作PG⊥BC于G.1.易证明PF=PG,∠BPG=∠EPF.因此,三角形BPG与EPF全等

如图,P是正方形ABCD对角线BD上一点

连接PC,∵PE⊥DC,PF⊥BC,ABCD是正方形,∴∠PEC=∠PFC=∠ECF=90°,∴四边形PECF为矩形,∴PC=EF,又∵P为BD上任意一点,∴PA、PC关于BD对称,可以得出,PA=P