在正方形ABCD中如图1如果点E,F分别在BC,CD上且AE垂直BF 垂足为M
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:03:08
因为是正方形.所以AB=BC=CD.因为BE=EC.所以BE=EC=1/2BC=1/2CD=1/2AB.所以BE=1/2AB,因为CF=1/4CD,所以CF=1/2EC.因为是正方形.所以角B=角C.
根据题意得在QR运动到四边时,点M到正方形各顶点的距离都为1,点M所走的运动轨迹为以正方形各顶点为圆心,以1为半径的四个扇形,∴点M所经过的路线围成的图形的面积为正方形ABCD的面积减去4个扇形的面积
(1)两个正方形重叠部分的面积保持不变;(2)重叠部分面积不变,总是等于正方形面积的14,即14×1×1=14,连接BE,CE,∵四边形ABCD和四边形EFGH都是正方形,∴EB=EC,∠EBM=∠E
用换底法..累死了,偶简述可以不?三棱锥B1-BDE等同于三棱锥D-B1BE对于三棱锥D-B1BE底面积S△B1BE可求DC⊥△B1BE所在面则DC为高三棱锥体积可求然后求S△DEB根据已知的体积即可
答案:(-2,0)连接CF交x轴于点P,根据位似图形定义可知P即是位似中心坐标,根据C点与F点坐标就可以求出辅助线直线方程为y=1/3*x+2/3与x轴交点为-2,求得答案可见名师讲解
∵AE=4,EF=3,AF=5∴AE2+EF2=AF2,∴∠AEF=90°∴∠AEB+∠FEC=90°∵正方形ABCD∴∠ABE=∠FCE=90°∵∠CFE+∠CEF=∠EAB+∠AEB=90°∴∠F
9个.一个是正方形对角线交点.另外八个是以四边为基准向内,外作等边三角形得到的八个顶点
设正方形ABCD的边长为a建立直角坐标,A(0,0)B(0,a)C(a,a)D(a,0)设P坐标(x,y)PA²=x²+y²=1PB²=x²+(y-a
设正方形中心为O,AEC面中AC既垂直于DB(正方形对角线),又垂直于PD(PD与整个ABCD面垂直);且PD、DB均属于面PDB且相较于D点由面面垂直定理得证
那个回答人的意思是假设他们是对应点,但是这也符合实际啊,相当于你把正方形OEFG平移上去,使得F与O点重合,这样再一观察,他们就是对应点啦,当然这只是假设,还有就是他做的那个M点,因为可以证明出△ME
答案是B、15设EC是x,那么CD的长度就是2x.因为DE的平方=DC的平方加CE的平方那么就有X平方+4X平方=5的平方就是X平方=5在面积上,又有ABED=ABCD-CED就是ABED的面积=4X
AE=4,EF=3,AF=5,AE^2+EF^2=AF^2,∠AEF=90°,那么∠AEB+∠FEC=90°,又因为∠B=90°,所以∠AEB+∠BAE=90°,所以∠BAE=∠FEC,△ABE∽△E
这个十分简单的!由于AE=4,EF=3,AF=5,得三角形AEF为直角三角形易知三角形ABE相似于三角形ECF则AB/EC=AE/EF=4/3所以EC是AB的4分之3BE就是AB的4分之1设AB=X,
igxiong008是对的~
分析你听哦设OE交AB于M,OG交BC于N,不难证明△OMB≌△ONC其实在转动过程中重叠部分的面积始终=△OBC的面积=正方形面积的4分之1所以(1)y=4x图像是过原点和(1,4)一条射线,原点除
(1)重叠部分的面积是保持不变的(2)在你画的第一个图上连接DE,在第二个图上连接CE,把阴影部分分成两个三角形,通过计算两个三角形的面积和可知两个图中的阴影部分的面积相等,都等于正方形ABCD面积1
(1)连接BD由题意得∵EF平行于平面ABCD,平面EFBA交平面ABCD=AB,AB在平面EFBA上∴EA平行FB.EA平行于平面FBD∴∠BFD或其补角为EA与FD所成的角FB=√6/3BD=√2
(1)等边直角三角形,高1/2a,面积=1/4a²(2)90X+45°,(X是整数)面积=1/4a²(3)相同,由几何三角形2角度数相等及两角相邻边相等,得出该两三角形相同,即可将
过E 作EG⊥AF,设BE=CE=½BC=a,则DF=2a-1∵∠FAE=∠BAE∴AE是∠BAF的角平分线∴BE=EG又∵BE=CE=½BC∴C
设正方形的边长为n,P到BC的高为(根3)n/2角PCD=30度,D到AP的距离为n/2三角形PBC的面积:S1=n*[(根3)n/2]*(1/2)=(根3)n^2/4三角形PCD的面积:S2=2*(