在正方形ABCD中,点E为对角线BD上的点,连接AE,CE求证AE=CE

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:42:27
在正方形ABCD中,点E为对角线BD上的点,连接AE,CE求证AE=CE
如图,已知正方形ABCD的面积为64,△ABE是等边三角形,且点E在正方形ABCD内.

正方形ABCD的面积为64∴边长=8以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP&

如图,在四边形ABCD中,AB//CD,AD//BC,点E,F在对角线上,且AE=CF,请你以F为一端点,和图中已标字母

显然是平行四边形ABCD.1)如图新线段FD,E,F两点在BD对角线上猜想FD=EB.证明:做辅助线FM,有ΔFMD∽ΔFBC,则FM/FB=DF/FC=MD/BC因为AE=CF,所以DF/AE=MD

如图,在边长为1的正方形ABCD中,点E在边BC上(与端点不重合),点F在射线DC上.

(1)y=-1/2x²+x(2)①若∠AEF=90°,∵△AEF∽△ECF,∴∠FAE=∠FEC=∠EAB,∴△ECF∽△ABE,∴AE/EC=EF/CF,EF/CF=AE/BE,∴AE/E

在边长为1的正方形ABCD中,点E在边BC上(与端点不重合),点F在射线DC上

1、当角AFE=90度时,三角形ECF相似于三角形EFA,并且,相似于三角形FDA所以,此时CF=1/2,CE=1/4同理,当角AFE=90度时,CF=1/4,CE=1/2当点F在DC的延长线上时,三

如图,正方形纸片ABCD和正方形EFGH的边长都是1,点E是正方形ABCD的中心,在正方形EFGH绕着点E旋转的过程中,

(1)两个正方形重叠部分的面积保持不变;(2)重叠部分面积不变,总是等于正方形面积的14,即14×1×1=14,连接BE,CE,∵四边形ABCD和四边形EFGH都是正方形,∴EB=EC,∠EBM=∠E

正方形ABCD,点E为BC中点,点F在CD上

解题思路:首先延长EB至H,使BH=DF,连接AH,证得△ADF≌△ABH,得出∠BAH=∠DAF,AF=AH,进一步得出△FAE≌△HAE,得出∠H=∠AFE,设BH为x,正方形的边长为a,在直角三

正方形ABCD,边长为4,E是AB边上的一点,AE为3,P是对角线上的移动点,问PE+PB的最小值是多少

因为P在正方形对角线上,所以可以证明三角形DAP和三角形BAP全等所以PB=PD于是PB+PE就转化成PD+PE的最小值两点之间直线最短咯于是就是D、P、B三点在同一直线上时取到最小值就相当于是求直角

如图,正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,边长为2,求正方形面积

显然,△ABE≌△ADF∴∠BAE=∠DAF∴∠CAE=∠CAF=30°∴△CAE≌△CAF∴CE=CF∵AE=AF∴AC垂直平分EF∴FG=EG=1,AG=√3∵△CEF是等腰直角三角形∴CG=EG

如图,正方形ABCD的边长为4,△ABE是等边三角形,点E在正方形ABCD中,在对角线AC上存有一点P

不清楚追问,清楚了希采纳再问:看不懂求过程再答:∵ABCD是正方形∴AC垂直平分BD∴当点P在AC上时,都有BP=DP∵当点B,P,E不在同一直线时,BP+PE>BE,当B,P,E在同一直线时,BP+

如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm

(1)1.在△BEP,△CQP中∠B=∠C,BE=CP=6,BP=CQ=4△BEP≌△CQP2.若要△BEP≌△CQP除1之外的情况,则只有BE=CQ=6,BP=CP=5才成立设Q的运动速度为x,则C

COME ON已知正方形ABCD边长为1CM,点E在对角线上,BE=BC.P是EC上一点,PF垂直于BD,PG垂直于BC

作CH⊥AB则CH=√2/2∴S△BCE=1/2*1*√2/2=√2/4连接BP则S△BPE=1/2*1*PF,S△BPC=1/2*1*PG∴1/2*(PF+PG)=√2/4∴PF+PG=√2/2

如图所示,正方形ABCD和正方形EFGH的边长分别为a和b,点E是正方形ABCD的中心,在正方形EFGH绕着点E旋转的过

不变分析:设旋转后是正方形则边长为1/2a*1/2a=1/4a^2若不为正方形则可以割补成为一个正方形(初四旋转会学,初三全等三角形也可以证明)

在正方形ABCD和正方形OEFG中,点A和点F的坐标分别为

那个回答人的意思是假设他们是对应点,但是这也符合实际啊,相当于你把正方形OEFG平移上去,使得F与O点重合,这样再一观察,他们就是对应点啦,当然这只是假设,还有就是他做的那个M点,因为可以证明出△ME

如图正方形ABCD中,AB=根号2,点F为正方形ABCD外一点,点E在BF上,且四边形AEFC为菱形

延长AB,过F作FG⊥AB延长线于G∵正方形ABCD,AB=√2∴AD=BC=CD=AB=√2∴AC=√2×√2=2∵菱形AEFC∴AF=AC=2,BF∥AC∴∠FBG=∠CAB=45∵FG⊥AB∴B

在边长为2的正方形ABCD中,点E是AD的中点,点F为CD上一点,EF垂直BE.求证:DEF相似于EBF

∵EF⊥BE∴∠DEF=180°-90°-∠AEB=∠ABE∴直角三角形△ABE∽△DEF∵点E是AD的中点∴AE:AB=DF:DE=1:2∵BE^2=AE^2+AB^2=5,EF^2=ED^2+DF

如图,在菱形ABCD中,点E,F为BC上两点,且BE=CF,AF=DE,求证四边形ABCD是正方形

如图,∵BE+CE=BCCF+BF=BCCF=BE∴BF=CE∵四边形ABCD为菱形∴AB=CD∵在△ABF和△DCE中AF=DEBF=CEAB=DC∴△ABF≌△DCE∴∠ABF=∠DCE∵在菱形A

一道立体几何在四棱锥V—ABCD中,底面ABCD为正方形,侧面VAD是正三角形切侧面VAD⊥底面ABCD,点E在VC边上

(1)存在,且就是VC的另一个三等分点连接AC,BD交于O连接EO在VC上取F,使得VF=CE,连接AF三角型ACF中,E为CF中点,O为AC中点,所以EO为中位线,EO//=1/2AFAF//平面B