在正方形ABCD中,E是BC中点,折叠正方形使点A与E重合
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 16:11:56
连接AE∵AD∥CE∴△ADF∽△CEF∴S△ADF∶S△CEF=(AB∶CE)^2=(2∶1)^2=4∶1∴S△ADF=4S△CEF而S△AEF∶S△CEF=AF∶CF=AB∶CE=2∶1(两个三角
取CD的中点G,连接GE,GF∵E,G分别是CB,CD的中点.∴GE // BD∵F,G分别是CD,C1D1的中点∴GF // DD1∴平面FGE//平面BB1
设AB=4 AD=4 DE=2 AE=2√5EF=√﹙2²+1²﹚=√5 AF=√﹙4
∵AD‖BE∴△ADF∽△EBF∵E是BC中点∴BE∶AD=BF∶FD=1∶2∵△DEF面积为2∴△BEF面积为1(高相同)∴△BDE的面积为3∴△BCD的面积=6∴正方形ABCD的面积=12选择B
EH^2=(1/3AB)^2+(2/3AB)^2=5/9AB^2EH^2/AB^2=5/9小正方形与大正方形的面积之比为5/9
⑴证明:把⊿ABE绕A逆时针旋转90º,到达⊿ADG∵EF=BE+DFFG=FD+BE∴FG=FE又 AE=AGAF=AF∴ΔAFE≌ΔAFG ﹙SSS﹚∴∠FAE=
不用作辅助线.∵四边形ABCD是正方形,∴∠ADC=∠ABC,BC=CD,∵CF=CF,∴△BCF≌△DCF,∴∠CBF=∠CDF,,∵E是BC中点,∴BE=CE,∵AB=DC,∠ABC=∠ACD.∴
在正方形abcd中,e是bd的中点.则ae与bc的交点是c,即c、f两点重合ae与bc相交于f三角形def的面积是1所以正方形abcd的面积是4个三角形def的面积,即正方形abcd的面积是4
将三角形ABE逆时针旋转,使AB与AD重合,B点转到B’点.证明三角形AB'F和三角形AFE全等,边角边然后三角形AB'F的面积是8*4/2=16注:B'F=EF=8,AD=4可得
延长AE交BC延长线于点G则△ADE全等于△GCE∴AD=CG∠DAE=∠G∵∠DAE=∠EAF∴∠EAF=∠G∴AF=FG设FC=XBC=aa²+(a-x)²=(x+a)
可以因为AD=2AE,BE=2BF所以三角形AED相似于三角形BFE所以角AED+角BEF=90度所以角DEF是直角.所以三角形DEF是直角三角形.
三角形CEF的面积是1可能打错.按图.应该是三角形DEF的面积是1,BF∶FA=BE∶AD=1∶2S﹙ABCD﹚=2×S⊿AED=2×3×S⊿DEF=2×3×1=6
(1)证明:作PB中点Q,连结AQ.DQ.EQ因为点Q.E分别是PB.PC的中点所以EQ//BC又AD//BC,则EQ//AD即点A.D.E.Q四点共面因为PD⊥平面ABCD,所以PD⊥AD又在底面正
设CF=x,由已知可得AD=AB=4X,BE=EC=2X,DF=3X,三角形ABE,三角形EFC,三角形AFD是直角三角形.所以由勾股定理得知AE²=AB²+BE²=16
如图,∵BE+CE=BCCF+BF=BCCF=BE∴BF=CE∵四边形ABCD为菱形∴AB=CD∵在△ABF和△DCE中AF=DEBF=CEAB=DC∴△ABF≌△DCE∴∠ABF=∠DCE∵在菱形A
正方形的面积为6再答:应该是S△EFC=1(阴影)过E作EG平行于AD,交AC于G,则G点是正方形的中心,EG=AD/2,根据相似性,FG=AF/2,又AG=GC,所以可得AF=FC/2,再根据等高不
简单说一下解题思路,具体步骤自己写!
第一问是错的吧?应该是求证△ABE相似于△DFA吧?①∵∠B=90°,DF⊥AE,∠DAF=∠AEB,∴的证②∵AB=2,E是中点,所以S△ABE=1,∴S△ADF=4/5,S四边形=11/5
证明:延长AE,DC交于点G,因为在正方形ABCD中,AB∥CD所以∠B=∠ECG,∠BAE=∠CGE又E是BC的中点,所以BE=CE所以△ABE≌△GCE所以AB=CG,在正方形ABCD中,AB=B
稍等再答:证明:将AE与DF的交点设为O∵正方形ABCD∴AD=CD=BC,∠ADC=∠C=90∴∠DAE+∠AED=90∵E是DC的中点,F是BC的中点∴DE=CD/2,F=BC/2∴DE=CF∴△