在正方形ABCD中,E为AC上一点,F为CD上一点,ED=EF

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:36:37
在正方形ABCD中,E为AC上一点,F为CD上一点,ED=EF
如图4 在正方形ABCD中 AC为对角线 E为AC上一点连接EB ED

证明:∵四边形ABCD是正方形,∴BC=CD,∠ECB=∠ECD=45°.又EC=EC,∴△BEC≌△DEC.(2)由(1)可知:△BEC≌△DEC∴∠BEC=∠DEC=1/2∠BED=70°∴∠AE

16.如图,在正方形ABCD中,E为对角线AC上一点,EF⊥CD于F,EG⊥AD于G,证明:BE=FG

证明:连EDABCD是正方形∴BC=CD∠BCE=∠DCE=45°∴△BCE≡△DCE∴BD=DE又FEGD是矩形∴ED=FG∴BE=FG施主,我看你骨骼清奇,器宇轩昂,且有慧根,乃是万中无一的武林奇

如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,

这题是做对称点以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP + 

在正方形ABCD中,AC为对角线,E,F为AB,AD上两点,连接CE,CF,已知CE=CF,求证:AE=AF

CE=CFBC=DCBCE和DCF是直角三角形可证BCE和DCF全等所以BE=DF由正方形可知AB=AD所以AB-BE=AD-DF即AE=AF

在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.

(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠ECB=∠ECD=45°.∴在△BEC与△DEC中,BC=CD∠ECB=∠ECDEC=EC∴△BEC≌△DEC(SAS).(2)∵△BEC≌△DE

正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,则PD+PE的最小值为

因为ABCD是正方形,所以D跟B关于AC对称.所以BP等于DP.所以PEPD=PEBP.要使PEBP最小.即B,P,E三点共线.PEBP=BE=AB=4,所以PEPD的最小值为4.

正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,则PD+PE的最小值多

连接PB,则PD=PB,那么PD+PE=PB+PE,因此当P、B、E在一直线的时候,最小,也就是PD+PE=PB+PE=BE=AB=4

如图,正方形ABCD的面积为12,三角形ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE

使P点是BE与AC的交点则可,这时PE+PD[(最小值)]=BE=AB=√(12)=2√(3),证明:连接BD,则AC是BD的垂直平分线,∴PD=PB,∴PD+PE=PB+PE=BE,在AC上任取异于

正方形ABCD面积为12 三角形ABC是等边三角形 点E在正方形ABCD内 在对角线AC上有一点P,使PD+PE的和最小

根号下12再问:能给详细的做法吗?再答:连接PB,PD=PB,所以PB+BE的最小值就是BE.

正方形ABCD的面积为10,三角形ABC是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最

有正方形ABCD的对称性可知PD=PB所以PD+PE=PB+PE当P为AC与BE交点时,PB+PE最小,且PB+PE=BE因为三角形EBC是等边三角形所以BE=BC=10所以PD+PE的最小值为10

正方形ABCD的边长为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,

d.12再问:请说明理由再答:再答:再答:再答:再答:再问:那个为什么DE'最短呢再答:纠正一下,be为最短路径的路径长。点p在ac上,就作d关于ac的对称点,又因ac为对角线、abcd为正方形,d的

在正方形ABCD中,点E在对角线AC上,连接BE,DE.

题目的图片画错了吧.参考:再问:图没错,字母有点错再答:解法完全一样,不用改。就是这么做。我的图和你的图一样,只不过你的图顺时针转90度就是我的图。解法不用改,是对的。

如图,正方形ABCD的边长为4,△ABE是等边三角形,点E在正方形ABCD中,在对角线AC上存有一点P

不清楚追问,清楚了希采纳再问:看不懂求过程再答:∵ABCD是正方形∴AC垂直平分BD∴当点P在AC上时,都有BP=DP∵当点B,P,E不在同一直线时,BP+PE>BE,当B,P,E在同一直线时,BP+

在正方形ABCD中,AC为对角线,E为AC上一点,连接EB,ED试说明△BEC全等与△DEC

由条件:BC=DC,∠BCE=∠DCE=45°,CE是公共边,∴△BEC≌△DEC(S,A,S)证毕.

初数学题如图4.在正方形ABCD中,动点E在AC上,AF⊥AC,垂足为点A,AF=AE.

手机提问的朋友在客户端右上角评价点【采纳】即可

在正方形ABCD中,E为AD的中点,BE,AC相交与G,

三角形AGE和三角形BGC相似,相似比为1:2(因为AE=1/2BC)所以S三角形AGE:S三角形BCG=1:4,BG=2EG所以S三角形ABG=2*S三角形AGEAD=2AE所以S三角形ADC=2*

一个初中几何证明,在正方形ABCD中,E为CD上一点,连接AE并廷长至等于对角线AC得到AH,以AC,AH为一组邻边做菱

连结DH,易知D、H、G共线,则∵AC//HG,∴∠HDE=∠ACE=45°,∴∠ADH=135°,根据正弦定理,得AD/sin∠DHA=AH/sin∠HDA,AH=AC,∴sin∠DHA=1/2,∵