在正方形abcd中,ef是对角线bd上两点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:48:31
由题意:四边形BFPE是矩形,所以其两对角线PB=EF∵正方形ABCD的两顶点B、D是关于其对角线AC成对称,所以PB=PD∴EF=PD
V﹙ABCDEF﹚=V﹙D-AGFE﹚+V﹙F-GBCD=1.5×2×3/3+﹙3/4﹚×3×2/3=7.5希望采纳哦!
连接de,df,将三角形dae以D为旋转中心顺时针旋转90度,E落在BC延长线上H所以DE=DH,因为ae+cf=efae=ch所以ef=cf+ch即ef=fhde=dh,ef=fh,df=df三角形
作ER⊥AD FS⊥BC则ER=FS=√3/2 RS∥AB∥EF ERSF是等腰梯形,作RG⊥EF SH⊥EF&
连接CB1,AB1CB1//DA1,EF⊥A1D,那么EF⊥CB1,EF⊥AC所以EF⊥ACB1很容易证DD1B⊥AC,则AC⊥BD1,同理AB1⊥BD1,所以BD1⊥ACB1所以EF//BD1
设AC与BD的交点为O,连接OH和OE因为H为BC的中点,O也为BD的中点,根据中位线定理可知OH平行且等于½DC,即OH平行且等于½AB,即OH平行且等于EF,所以平面O
证明,连接AC并取AC中点P,连接EP,PF在三角形SAC中,FP是中位线,所以FP//SA,所以FP//平面SAD又在正方形ABCD中,P是AC中点,所以P也是BD的中点,所以EP也是中位线且EP/
证明:(1)∵EF∥BC,AD∥BC,∴EF∥AD.在四边形ADEF中,由FA=2,AD=3,∠ADE=45°,可证得EG⊥DE,又由FA⊥平面ABCD,得AF⊥CD,∵正方形ABCD中CD⊥AD,∴
EF⊥FB,∠BFC=90°,∴BF⊥面EFCD∠DFC是二面角D-BF-C的平面角.设AB=2,则DC=2FC=√2﹙⊿BFC等腰直角﹚∠DCF=90º∴tan∠DFC=2/√2=√2⑵作
现在不方便画图,给你说一下思路吧:1、你可以把AB往两端各延长0.5、把CD也往两端各延长0.5,然后新端点分别跟E、F西点连接.这样,就可以得到一个三棱柱;三棱柱的体积可以用端面积乘以长来计算;2、
(I)设AC与BD交于点G,则G为AC的中点.连EG,GH,由于H为BC的中点,故GH‖AB且GH=AB又EF‖AB且EF=AB∴EF‖GH.且EF=GH∴四边形EFHG为平行四边形.∴EG‖FH,而
从题目的条件,体积是确定的﹙祖衡定理﹚.可以在正方体中作这个图形. V﹙ABCDEF﹚=V﹙D-AGFE﹚+V﹙F-GBCD)=1.5×2×3/3+﹙3/4﹚×3
过F作FG⊥AB于G.易证△EFG≌△PAB,得EF=PA=13cm
因为EF⊥AC角ADC是90º在RT三角形EFC与RT三角形FDC中CE=CDCF是公共边则RT三角形EFC≌RT三角形FDCEF=DF角DCF=角ECF因为ABCD是正方形,所以角ACD=
将三角形AFD旋转到正方形外
(1)连接BD由题意得∵EF平行于平面ABCD,平面EFBA交平面ABCD=AB,AB在平面EFBA上∴EA平行FB.EA平行于平面FBD∴∠BFD或其补角为EA与FD所成的角FB=√6/3BD=√2
看不清图再问:再答:再问:EF//AB再答:��再答:再答:��������
图你自己画吧,由P向AB,BC,CD,AD作垂线,垂点分别为S,R,Q,T.由定理知,PQ/BC=EQ/EC,PQ/FD=CQ/CD,又因为CD=BC=2FD2EC,EQ=EC-CQ,化简可得4EC=
过点F做平行于平面EAD的截面,多面体被分为一个三棱柱和一个四棱锥两部分,其中三棱柱的体积等于棱长乘以垂直于棱的截面面积,所以V(三棱柱)=1/2*3/2*2*3=9/2V(四棱锥)=1/3*2*3*