在正方形ABCD中,AB=3,点E在边CD上,且CD=3DE
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:26:47
证明:∵四边形ABCD是正方形∴OD=OC,OD⊥OC∴∠COF=∠BOE=90°又∵OE=OF∴△COF≌△BOE(SAS)∴CF=BE
第一问,用相似推出MN=1,和EF平行且相等,有平行四边形EFNM,FN//EM,EM//面FBC.第二问.还有第三问,你确定这是高一的题么.好像要用到空间向量的说再问:这是高一的题呀。。空间向量在必
四点共圆有三个性质:(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;(2)圆内接四边形的对角互补;(3)圆内接四边形的外角等于内对角.以上性质可以根据圆周角等于它所对弧的度数的一半进行证明.此
(1)由等腰△APD三线合一知AG⊥PD,且PD⊂面PCD,故AG⊥面PCD;(2)又面PEC⊥面PDC,且AG⊄面PEC,故AG//面PEC;(3)先证明点E是AB的中点(不
(Ⅰ)证明:∵CD⊥AD,CD⊥PA∴CD⊥平面PAD∴CD⊥AG,又PD⊥AG∴AG⊥平面PCD &nb
设正方形ABCD的边长为2a,∵E是AB的中点,∴BE=a,∴CE=BE2+BC2=5a,∵BF⊥CE,∴∠EBC=∠BFC=90°,∵∠ECB=∠BCF,∴△BCF∽△EBC.∴BC:EC=2:5.
如果是这样的话,EF=根号74而ED=根号65当EF=EH时,必定使H不在AD边上所以a=5不存在再问:没看懂再答:如果BF是5,BE是7,那么EF的长就是根号74那是一个菱形,所以EH也是根号74,
(1)证明:∵∠ADC=∠PDQ=90°,∴∠ADP=∠CDQ.在△ADP与△CDQ中,∠DAP=∠DCQ=90°AD=CD∠ADP=∠CDQ∴△ADP≌△CDQ(ASA),∴DP=DQ.(2)猜测:
图上的字母C、D的确反了,这题有点难度:
AB=3B可以再A左边,也可以在右边所以B(±3,0)CD可以再x轴上方,也可以在x轴下方所以C(±3,±3)D(0,±3)即B(3,0),C(3,3),D(0,3)或B(3,0),C(3,-3),D
设AC与BD的交点为O,连接OH和OE因为H为BC的中点,O也为BD的中点,根据中位线定理可知OH平行且等于½DC,即OH平行且等于½AB,即OH平行且等于EF,所以平面O
设CF和DE交于点O证明:∵AE=DFAD=DC∠EAD=∠FDC∴△EAD≌△FDC∴∠AED=∠DFC又∠ADE+∠AED=90°∴∠ADE+∠DFC=90°∴∠FOD=90°∴CF⊥DE
∵AD=BC=AC−AB=(2,5)-(1,3)=(1,2)BD=AD−AB=(1,2)-(1,3)=(0,-1)故答案为:(1,2),(0,-1)
(1)因为SA垂直平面则AD垂直于SA.因为ABCD是正方形则AD垂直于AB所以AD垂直于平面SAB则AD垂直于SB(2)由(1)知AD垂直于平面SAB即BC垂直于平面SAB所以角BSC为直线SC与平
∵NH∥BO,∴△AHN∽△AOB,∴AH/AO=HN/OB,∴AH/HN=OA/OB=3/1,∴NH=3/4ON=3√2/4,∴AN=3√10/4BN=√10/4,∵在△AQN和△OBN中,∠QAN
因为正方形,所以OA=OB,角AOB=90度,勾股,AO=BO=根号2,因为A在x轴的负半轴(y=0),所以A(-根号2,0)
(1)在正方形ABCD中,AD=DC,AE=DF,∠EAD=∠FDC,所以△EAD≌△FDC,故DE=CF,∴∠EDA=∠FCD,又∵∠DCF+∠DFC=90°,∴∠ADE+∠DFC=90°,∴∠DG
设AC、DM的交点是P,因为AM//DC,所以角PDC=角PMA,角DCP=角MAP,所以三角形DPC相似于三角形MPA所以它们的高之比h1:h2=1:2设正方形的边长为a,h1=1/3a,h2=2/
目测三角法,现行送上(O为CE,BF交点)修正完整版再问:这个题是初二初三的题,有没有容易理解的解法?比如说图形法,反证法等,谢谢再答:当然有,只是习惯了用计算,懒得添辅助线延长BF交AB于H可以证明