在正方形ABCD E是BC边上一点,F是CD的中点,且AE=DC+CE

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 15:45:42
在正方形ABCD E是BC边上一点,F是CD的中点,且AE=DC+CE
如图,在三角形ABCD中,点E是BC边上的中点.图中阴影部分的面积是正方形ABCD面积的几分之几?

连接AE∵AD∥CE∴△ADF∽△CEF∴S△ADF∶S△CEF=(AB∶CE)^2=(2∶1)^2=4∶1∴S△ADF=4S△CEF而S△AEF∶S△CEF=AF∶CF=AB∶CE=2∶1(两个三角

1.如图,正方形ABCD中,BD是对角线,E,F点分别在BC,CD边上,且△AEF是等边三角形.

1可以设正方形边长为a,BE=b,所以易得EG=2a-b.HG=√3a.所以要证2a-b=√3a两边平方得a2+b2=4ab设正三角形边长c.a2+b2=c2.由又三角形ECF知2(a-b)2=c2所

一初二数学题目------“在三角形ABC中,AD是BC边上的中线.求:AD

延长AD到E,使得DE=AD,连接BE则易知三角形BDE全等于三角形CDA.因此BE=AC在三角形ABE中,AE

已知:如图,在正方形ABCD中,E、F分别是BC、DC边上的点,且AE⊥EF于点E.

很高兴为您解答!分析:(1)在AB上取BH=BE,连接EH,根据已知及正方形的性质利用ASA判定△AHE≌△ECP,从而得到AE=EP;(2)先证△DAM≌△ABE,进而可得四边形DMEP是平行四边形

如图,在边长为5的正方形ABCD中,点E,F分别是BC,DC边上的点,且AE⊥EF,BE=2.

,在AB上取BM=BE,连接EM,∵ABCD为正方形,∴AB=BC,∵BE=BM,∴AM=EC,∵∠1=∠2,∠AME=∠ECP=135°,∴△AME≌△ECP,∴AE=EP;(3)存在.顺次连接DM

已知:如图,在正方形ABCD中,E、F分别是BC、DC边上的点,且AE垂直于EF于点E

(1)AE=EP.证明:设AB=X,BE=Y,则EC=X-Y.作PG垂直BC的延长线于G,易知PG=CG,设∠BAE+∠AEB=90°=∠AEB+∠PEC,则:∠BAE=∠PEC;又∠B=∠PGE=9

在正方形ABCD中,F是CD中点,E是BC边上一点,且AE=DC+CE,求证:AF平分∠DAE

连接EF,并延长EF、AD交于点G在三角形EFC和GFD中角EFC=GFD,角GDF=角C=90度,DF=FC所以三角形EFC与GFD全等所以DG=CE,EF=FG所以AE=CD+CE=AD+DG=A

已知如图所示在正方形abcd中p是bc边上的点,且BP=3PC,q是CD的中点,求证:△ADQ∽△QCP.

△ADQ∽△PCQ∵BP=3PC,∴CP=1/4BC=1/4CD,∵Q是CD的中点,∴CQ=DQ=1/2AD.∴CP/QD=CQ/AD=1/2又∵∠C=∠D.∴△ADQ∽△QCP.再问:呵呵,是不是在

已知 如图,在正方形ABCE中,M是BC的中点,点P在DC边上,且AP=AB+CP.求证:AM平分角BAP

如图:(你题目中的正方形应该是ABCD)证明:1、延长AB至F,使BF=CP,在BC上交于点E.因为:角EBF=角ECP、BF=CP、角BFE=角CPE所以:三角形EBF全等于三角形ECP、FE=EP

如图,在正方形ABCD中,AB=2,P是BC边上与B、C不重合的任意一点,DQ⊥AP于点Q

(1)∵四边形ABCD是正方形,∴AD∥BC,∠B=90°,∴∠DAP=∠APB,∵DQ⊥AP,∴∠AQD=90°,∴∠B=∠AQD,∴△DAQ∽△APB;(2)∵△DAQ∽△APB,∴DQAB=DA

如图在正五边形ABCDE中,点M是BC边任意一点,点N位CD边上任意一点,且BM=CN,BN与AM相交于点O,求∠BOM

∵ABCDE是正五边形∴AB=BC,∠ABC=∠BCD=72°∵BM=CN∴△ABM≌△BCN∴∠BAM=∠CBN∵∠BAM+∠BMA=180°-∠ABC=102°∴∠CBN+∠BMA=108°∴∠B

如图,在正方形ABCD中,点E是BC边上的点,点F是CD边上的点,且AE=AF,AB=4设S△AEF=y,EC=x.

1)CF=CE=X,BE=4-XS△AEF=S正方形-S△ABE-S△CEF-S△ADF=16-1/2[2*4*(4-X)+X*X]=-x^2/2+4xy=-x^2/2+4x,0

如图,在正方形ABCD中,E是BC边上的点,F是CD边上的点,且AE=AF,AB=4,设△AEF的面积为y,EC的长为x

由AE=AF可知ADF和ABE是两个全等三角形,FC=CE=X,所以三角形AEFR的面积Y等于正方形面积减三角形ADE、ABE、FCE的面积,即\x0dY=4*4-2*4*(4-x)/2-x*x/2

正方形ABCD F在BC边上,AE平分角DAF 证明DE=AF-BF

那个,我这方法可能有点麻烦哈以F为圆心AF为半径,具体如图∴AF=FI=FH∵A是圆上一点∴∠HAI=90°=∠DAB∴∠DAE+∠EAB=∠EAB+∠BAI∴∠DAE=∠BAI又∵AB=AD,∠AB

在面积为3的正方形ABCD中,E,F分别是BC和CD边上的两点,AE垂直于BF 于点G ,且BE等于

 ∵正方形面积为3,∴AB=√3在△BGE与△ABE中, ∵∠GBE=∠BAE, ∠EGB=∠EBA=900∴△BGE∽△ABE   &nb

在正方形abcd中,e是bc边上一点,af平分角EAD交cd于点f.求证ae=be+df

辅助线:延长CB到G,使BG=DF∵正方形ABCD,AB=AD,AB⊥BC,AD⊥DC∴△ABG全等于△ADF∴∠GAB=∠FAD,∠AGB=∠AFD∵AF平分角EAD∴∠GAB=∠FAE∵AB‖CD

如图,在边长为4的正方形ABCD中,E是DC中点,点F在BC边上,且CF=1,在△AEF中作正方形

1)ADE,CEF,AEF,AA1D,D1EC1,B1C1F都是边长等于1:2的三个直角三角形2)AF=√(16+9)=5AE=√20=AD1+D1E=√5×A1D1+D1C1×(2÷√5)A1D1=