在椭圆X平方 4Y平方=4上求一点,使其到直线2x 3y-6=0的距离最短
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 23:25:19
圆C:x²+y²-4x-2√2y=0(x-2)²+(y-√2)²=6圆心(2,√2)半径=√6对于椭圆c/a=√2/2a²=2c²因为a
解c=√5,b=2,a=3因为b=PF2解得F1P=4,F2P=2PF1/PF2=2当F2为直角顶点时取x=c=√5,得y=4/3或-4/3即PF2=4/3,PF1=14/3PF1/PF2=7/2
抛物线Y平方=4X的焦点为(1,0)所以在椭圆中,c=1又因为在椭圆中a^2=b^2+c^2所以a^2=b^2+1设椭圆方程为x^2/(b^2+1)+y^2/b^2=1再将点(1,3/2)带入方程,得
由椭圆方程可知,a^2=4,b^2=3,所以c^2=1,所以焦点坐标是(c,0),(-c,0),即(-1,0)和(1,0),焦距=2x^2=1/4y类比x^2=2py焦点坐标(0,1/16),准线方程
设点P(4cosa,3sina),则点P到直线3x-4y-24=0的距离为d=|3*4cosa-4*3sina-24|/5=12|cosa-sina-2|/5=12|√2cos(a+π/4)-2|/5
焦距2c=2c=1c^2=a^2-b^2所以m-4=c^2或4-m=c^2m=5或m=3
1、(1)将直线方程带入到椭圆方程里去得到5x²+2mx+m²-1=0,直线与椭圆有交点说明方程有实数根,因此△=4m²-20(m²-1)≥0,解得-根号(5)
令圆(x+1)^2+y^2=1的圆心为A,则点A的坐标为(-1,0).连结AQ交⊙A于B,在⊙A上取点B外的任意一点为C,则A、C、Q构成了一个三角形.显然有:|CQ|+|AC|>|AQ|=|BQ|+
AB弦长=24/7解椭圆方程x^2/4+y^2/3=1直线y=x+1斜率k=1把y=x+1代入x^2/4+y^2/3=1化简得7x^2+8x-8=0设A(x1,y1),B(x2,y2)|AB|=√[(
椭圆X平方除以4+Y平方除以2=1用三角换元x=2cosay=根号2sinaY除以(X-4)=根号2sina除以(2cosa-4)下面看这一部分2sina除以(2cosa-4)=(2sina-0)除以
(2倍根号5/3,-2/3)或(-2倍根号5/3,-2/3)
设P(2√2cosa,sina),则P到直线的距离为d=|2√2cosa-sina+4|/√2,由于2√2cosa-sina+4=3[2√2/3*cosa-1/3*sina]+4=-3sin(a-b)
标准形式为x^2/16+y^2/64=1故a=8,b=4,焦点坐标(0,4根号3)和(0,-4根号3)
椭圆方程:x^2/4+y^2=1,a1=2,b1=1,c1=√3,F1(-√3,0),F2(√3,0);双曲线方程:x^2-y^2/2=1,a2=1,b2=√2,c2=√3,F1(-√3,0),F2(
由已知得a=√5,b=2,c=1,在△F1F2P中,由斜弦定理得F1F2²=PF1²+PF2²-2*PF1*PF2*cos30°上式变形得F1F2²=(PF1+
问题1,将y=x+m带入4x平方+y平方=1,得到一元二次方程5x2+2mx+m2-1=0,求该方程的delta=20-16m2,因为有交点,所以方程有解,所以delta>=0,所以,负二分之根号五
4x²+y²=4x²/1+y²/4=14>1所以焦点在y轴a²=4,b²=1c²=4-1=3e²=c²/a&s
椭圆3x²+4y²=12变成标准方程x²/4+y²/3=14>3∴焦点在x轴上c²=4-3=1∴c=1∴抛物线焦点是(1,0)∴p/2=1p=2∴抛物