在椭圆x² y²=4上求一点,使其到直线2x 3y-6=0的距离最短?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 08:05:49
平行于直线x+y=5的直线与椭圆相切,切点较近的为最近点,较远的为最远点.x^2/12+y^2/4=1(1)对x求导得2x/12+2y*y'/4=0soy'=-x/3y=-1(2)so两点(3,1)(
椭圆方程是x^2/4+y^2/3=1故设x=2cosa,y=根号3sina到直线的距离是d=|2cosa-2根号3sina-11|/根号(1+4)=|4cos(a+Pai/3)-11|/根号5当cos
可以用参数方程,如果是椭圆的话,设x=2cosa,y=sinaa属于0到2π,用点到直线距离公式,得到d=(4cosa+3sina-6)的绝对值/根号下13,用辅助角公式有(5sin(a+b)-6)的
设M是椭圆上一点,M(x,y),M至直线距离d=(2x+3y-6|/√13,作目标函数D=(√13d)^2=(2x+3y-6)^2,限制条件:x^2+4y^2-4=0,作函数Φ(x)=(2x+3y-6
将直线2x+3y-6=0进行平移,使之与椭圆相切,平移后的直线方程即为2x+3y-a=0,联立方程x^2+4y^2=4与2x+3y-a=0,由于相切,即方程组有唯一解,可以解得a=5,切点为(1.6,
参数方程x=3cosxy=2sinxM到直线x+2y-10=0的距离=|3cosx+4cosx-10|/根号五3cosx+4cosx-10∈[-15,-5]所以距离最小是根号5当且仅当x=9/5y=6
点A,B已定,要△ABP面积最大,必须且只需P到AB的距离d=|x+2y-2|/√5最大,其中x^2/9+y^2/4=1,于是设x=3cost,y=2sint,d√5=|3cost+4sint-2|=
a=4,c=2,所以e=1/2.准线方程为X=8所以2|PF|=|PF|/e=P到准线的距离.明白这点以后就好做了,画图可以得到P为(三分之四根号6,2)最小值为7
设x-y+c=0,联立x^2+8y^2=8解得:9x^2/8+2cx+c^2-1=0—①因与椭圆相切,所以△=0,求的c=-3,故所求直线为x-y-3=0,将c=-3代入①中求得X=8/3,y=-1/
看来你只要截距的概念."直线与x轴交点的横坐标叫做直线在x轴上的截距,又叫做横截距;直线与y轴交点的纵坐标叫做直线在y轴上的截距,又叫做纵截距."例如,对于直线y-y0=(-b^2/a^2)*(x0/
因为.(m,n)是p点坐标,他要符合椭圆方程的解,把m,n的关系式,这里设t作为它们的等量关系式子,代入椭圆方程,也同样应有解,二次方程有解,势必戴尔他大于等于零
最短距离:13/根号5方法:换元法(先做一下图:看看大致的位置关系,心中有数,不过不画也无所谓)椭圆嘛,设x=3cosa,y=2sina点到直线的距离,书上应该有公式的(m,n)到直线Ax+By+C=
设点P的坐标为(5cosθ,√5sinθ).由椭圆方程x^2/25+y^2/5=1,得:c=√(25-5)=2√5.∴椭圆的两焦点坐标分别是F1(-2√5,0)、F2(2√5,0).∴向量PF1=(-
椭圆的焦点c^2=a^2-b^2=9-4=5,所以c=√5,a>b,焦点在x轴,焦点的坐标为:F1(√5,0),F2(-√5,0)设p点坐标为:(xp,yp)直线PF1的斜率为:k1=(yp-0)/(
解由椭圆x²/4+y²=1,设椭圆上的任一点P(2cosa,sina)故/PA/=√(2cosa-0)^2+(sina-2)^2=√(4cos^2a+sin^2a-4sina+4)
3x^2+4y^2=48,x^2/16+y^2/12=1a=4,b=2√3c=2.e=c/a=1/2根据椭圆第二定义,椭圆上的点到焦点距离与对应准线距离之比为离心率得2|PF|就是P到右准线x=a^2
思路:1.设一条直线为Ax+By+c=0(这条直线的斜率与题目中直线的斜率一样,因为只有斜率一样,直线才会平行,进而谈论距离问题,不平行的两条直线是没有距离的)2.联立Ax+By+c=0和椭圆方程,得
两点即为线:y=kx+bP:(x1,y1)四个未知数,四个方程解开即可.方程思想的应用.只提供思路,自己做吧,解析几何很重要的是:方程思想.
求椭圆平行于直线2x-y=6的切线(有两条,一个最大值,一个最小值),然后求切线与直线的距离