在椭圆x² 4y²=4上求一点,使其到直线2x 3y-6=0的距离最短
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 08:55:19
椭圆方程是x^2/4+y^2/3=1故设x=2cosa,y=根号3sina到直线的距离是d=|2cosa-2根号3sina-11|/根号(1+4)=|4cos(a+Pai/3)-11|/根号5当cos
设M是椭圆上一点,M(x,y),M至直线距离d=(2x+3y-6|/√13,作目标函数D=(√13d)^2=(2x+3y-6)^2,限制条件:x^2+4y^2-4=0,作函数Φ(x)=(2x+3y-6
将直线2x+3y-6=0进行平移,使之与椭圆相切,平移后的直线方程即为2x+3y-a=0,联立方程x^2+4y^2=4与2x+3y-a=0,由于相切,即方程组有唯一解,可以解得a=5,切点为(1.6,
设P(2cosa,sina)2x+3y=4cosa+3sina=5sin(a+b),其中tanb=3/4,利用辅助角公式所以当sin(a+b)=1的时候,2x+3y有最大值5(x-1)²+y
椭圆x²+y²/(1/2)²=1,长半轴为1短半轴为1/2,同时把长半轴和短半轴扩大n倍,使其与双曲线xy=1相切,x²/n²+y²/(n/
点A,B已定,要△ABP面积最大,必须且只需P到AB的距离d=|x+2y-2|/√5最大,其中x^2/9+y^2/4=1,于是设x=3cost,y=2sint,d√5=|3cost+4sint-2|=
a=4,c=2,所以e=1/2.准线方程为X=8所以2|PF|=|PF|/e=P到准线的距离.明白这点以后就好做了,画图可以得到P为(三分之四根号6,2)最小值为7
设x-y+c=0,联立x^2+8y^2=8解得:9x^2/8+2cx+c^2-1=0—①因与椭圆相切,所以△=0,求的c=-3,故所求直线为x-y-3=0,将c=-3代入①中求得X=8/3,y=-1/
依椭圆参数方程,设点P(3cosθ,2sinθ).∴d^2=(3cosθ-1)^2+(2sinθ-0)^2=5(cosθ-3/5)^2+16/5.∴cosθ=3/5,即点P为(9/5,8/5)时,所求
最短距离:13/根号5方法:换元法(先做一下图:看看大致的位置关系,心中有数,不过不画也无所谓)椭圆嘛,设x=3cosa,y=2sina点到直线的距离,书上应该有公式的(m,n)到直线Ax+By+C=
椭圆的焦点c^2=a^2-b^2=9-4=5,所以c=√5,a>b,焦点在x轴,焦点的坐标为:F1(√5,0),F2(-√5,0)设p点坐标为:(xp,yp)直线PF1的斜率为:k1=(yp-0)/(
椭圆上的点到两焦点的距离和是定值嘛,所以第一问可以用基本不等式算出.第二个就要设点,设P坐标是(a,b),两向量分别是(a-√3,b)和(a+√3,b),点乘就等于aˆ2-3+bˆ
x^2/16+y^2/12=1a^2=16,b^2=12,c=2在l:X+Y-4=0上任意一点MxM=n,yM=4-nM(n,4-n)过M(n,4-n)并且以椭圆x^2/16+y^2/12=1的焦点为
解由椭圆x²/4+y²=1,设椭圆上的任一点P(2cosa,sina)故/PA/=√(2cosa-0)^2+(sina-2)^2=√(4cos^2a+sin^2a-4sina+4)
3x^2+4y^2=48,x^2/16+y^2/12=1a=4,b=2√3c=2.e=c/a=1/2根据椭圆第二定义,椭圆上的点到焦点距离与对应准线距离之比为离心率得2|PF|就是P到右准线x=a^2
思路:1.设一条直线为Ax+By+c=0(这条直线的斜率与题目中直线的斜率一样,因为只有斜率一样,直线才会平行,进而谈论距离问题,不平行的两条直线是没有距离的)2.联立Ax+By+c=0和椭圆方程,得
两点即为线:y=kx+bP:(x1,y1)四个未知数,四个方程解开即可.方程思想的应用.只提供思路,自己做吧,解析几何很重要的是:方程思想.
根据题意,椭圆的焦点是(0,±4√3)可以设椭圆的方程为:x^2/a^2+y^2/b^2=1∵M在x+y=8上也在椭圆上,∴当椭圆长轴最短时,根据a^2=b^2+c^2,知短轴此时也是最短,最短时直线
对于这样的题,叫你一种简单而快速的解法,该法叫三角换元法(注意看咯)由x^2/4+y^2=1令x=2cosx,y=sinx(换成三角函数)即M(2cosx,sinx)则距离d=|3x+4y-12|/5