在椭圆x24 y23=1内有一点p(1,-1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 18:55:21
在椭圆x24 y23=1内有一点p(1,-1)
在正方形abcd内有一点p,pa:pb:pd=1:2:3,求:cpd的度数?

过B作BE垂直PB,使BE=PB,连接AE,PE因为正方形ABCD所以角ABC=90度,BA=BC因为BE垂直PB所以角EBP=90度所以角ABE=角CBP因为BE=PB,BA=BC所以三角形ABE全

已知椭圆X^2/4+Y^2/3=1内有一点P(1,-1),F为椭圆的右焦点,M为椭圆上的一点求MP+MF的最大值和最小值

本题可以考虑用函数方法求解,为减少计算,不妨采用椭圆的参数方程设点易知a^2=4,b^2=3,则c=1,于是焦点F坐标为(1,0)令M(2cosα,√3sinα),这里α为离心角,取值范围为[0,2π

已知椭圆x²/16+y²/4=1,内有一点P(2,-1),求经过P并且以P为中点的弦所在的直线方程.

用点差法.设弦的端点为A(x1,y1),B(x2,y2),代入得x1^2/16+y1^2/4=1,x2^2/16+y2^2/4=1,两式相减得(x2+x1)(x2-x1)/16+(y2+y1)(y2-

(2012•钟祥市模拟)如图,已知椭圆x22+y2=1内有一点M,过M作两条动直线AC、BD分别交椭圆于A、C和B、D两

(1)证明:设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4)由|AB|2+|CD|2=|BC|2+|AD|2知(x1−x2)2+(y1−y2)2+(x3−x4)2+(y3−y4

在矩形ABCD平面内有一点P,PA=PD,求证PB=PC

作直线pmn//ab,交ad于m,交bc于npa=pdpm垂adm为ad中点am=bnn为bc中点pn垂bcpb=pc

有一个焦点在x轴上的椭圆,其离心率为e=√3/2,椭圆的上方有一点P(0,3/2),椭圆上有一点Q,已知PQ距离的最大值

设椭圆方程为:x²/a²+y²/b²=1(a>b>0,因)e=√3/2,即:c/a=√3/2,(a²-b²)/a²=3/4,a&s

X^2/25+Y^2/16=1外有一点A(2,5)内有一点B(3,0),点P为椭圆上一点,求PA+PB的最

最什么?再问:最小值再答:根号下26再问:过程呢,是利用两点间距离公式不~再答:是的,就是利用两点间距离公式。

似乎是有关第一定义的已知椭圆x2/4+y2/3=1内有一点P(1,-1)F为右焦点M是椭圆上一个动点求MP+MF最小值

这个要用椭圆的第二定义.a^2=4,b^2=3则c^2=1e=c/a=1/2则MF/M到右准线距离=1/2M到右准线距离=2MF右准线x=a^2/c=4P到右准线距离=4-1=3作PQ垂直右准线,则当

已知椭圆x2/4+y2/3=1内有一点P(1,-1)F为右焦点M是椭圆上一个动点求MP+MF最小

a^2=4,b^2=3则c^2=1e=c/a=1/2则MF/M到右准线距离=1/2M到右准线距离=2MF右准线x=a^2/c=4P到右准线距离=4-1=3作PQ垂直右准线,则当M是PQ和椭圆交点时距离

已知椭圆x2/4+y2/3=1内有一点P(1,-1)F为右焦点,M是椭圆上一个动点,求MP+2MF最小时,M的坐标

a^2=4,所以a=2c^2=4-3=1e=c/a=1/2右准线方程是x=a^2/c,即x=4做M到右准线X的垂线N,MF/MN=e=1/2,所以MN=2MF即MP+2MF=MP+MNP就定点,L为定

已知椭圆X^2÷4+Y^2÷3=1内有一点P(1,-1),F是椭圆的右焦点,若在椭圆上有一点M,使|MP|+2|MF|的

a^2=4,b^2=3则c^2=1e=c/a=1/2则MF/M到右准线距离=1/2M到右准线距离=2MF右准线x=a^2/c=4P到右准线距离=4-1=3作PQ垂直右准线,则当M是PQ和椭圆交点时距离

已知椭圆x^2/4+y^2/3=1内有一点M(1,-1),F1,F2为椭圆的左,右焦点,分别求

设点P,M在准线x=4上的射影是P',M'.由椭圆的第二定义|PF2|/|PP'|=e=1/2,∴|PP'|=2|PF2|.∴|PM|+2|PF2|=|PM|+|PP'|≥|MM'|=3,当且仅当M,

已知椭圆X2/25+Y2/16内有一点A(2,1),F为椭圆的左焦点,求绝对值PA与绝对值PF和的最小值,最大值

/>设右焦点为F'则F'(4,0)|AF’|=√[(4-2)²+(0-1)²]=√5∵|PF|+|PF‘|=2a=10∴|PA|+|PF|=|PA|+10-|PF‘|=10+|PA

一道椭圆的题F是椭圆x^2/16+y^2/12=1的左焦点,点P(-2,根号3)在椭圆内,点M在椭圆上,若使|PM|+2

由椭圆的方程可知其左焦点坐标F为(-2,0)点P横坐标与F相同说明在其上方要使得|PM|+2|PF|最小即让这两段线段共线时,取最短2|PF|=|PF|+|PoF|其中的Po为P关于X轴的对称点即要使

如图1,在正方形ABCD内有一点P满足AP=AB,PB=PC,连接AC、PD.

(1)∵四边形ABCD为正方形,∴∠ABC=∠DCB=90°,AB=CD,∵BP=PC,∴∠PBC=∠PCB,∴∠ABP=∠DCP,又∵AB=CD,BP=CP,∴△ABP≌△DCP(SAS).(2)设

椭圆x^2/8+y^2/t=1内有一点A(2,1),过点A的直线L的斜率为-1,且与椭圆交于b,c两点,线段bc的中点是

L是y=-x+3代入tx²+8y²=8t(t+8)x²-48x+p²-8t=0x1+x2=48/(t+8)中点横坐标=(x1+x2)/2=224/(t+8)=2

已知椭圆x^2/25+y^2/9=1内有一点(4,-1)F为右焦点,M为椭圆上一动点,MA+MF的最小值(详解)

设N为左焦点,则:MF+MN=2a=10,从而有:MA+MF=MA+(10-MN)=10+(MA-MN)考虑到|MA-MN|≤AN,即:-AN≤MA-MN≤AN,即:MA-MN的最小值是-AN,所以:

已知椭圆X^2/4+Y^2/3=1内有一点P(1,-1),F为椭圆的右焦点,在椭圆上有一点M,使MP+2MF取得最小值,

给你思路利用椭圆定义做:平面内与两个定点F1、F2的距离之和等于常数.把MP+2MF转换,放入三角形中,讨论

椭圆x^2/4+y^2/3=1内有一点p(1,-1),F为右焦点,椭圆上的点M,使得|MP|+2|MF|的值最小,则这一

平面上到定点距离与到定直线间距离之比为常数的点的集合(定点不在定直线上,该常数为小于1的正数)(该定点为椭圆的焦点,该直线称为椭圆的准线).对于本题,a^2=4,所以a=2c=4-3=1e=c/a=1