在棱长为a的正方体ABCDA1B1C1D1中,求A到A1BD的距离d
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:17:52
(1)AE=CE=√5a/2,AC=√2a,∴S△ACE=(1/2)AC*√[AE^2-(AC/2)^2]=(1/2)√2a*√3a/2=(√6/4)a^2,V(E-ACD)=V(D-ACE),∴(1
1、1;2、45度;3、(a/2)x(根号2)再问:过程,谢谢
1.异面直线EF与OD1所成角=∠DOD1所以其正切值为√2.2.容易证明AC⊥面DOD1;AC⊥EF所以异面直线EF与OD1的距离=½AO=√2a/4.
本题方法较多有:向量、面面平行定理、勾股定理、等积代换等
正方体ABCD-A1B1C1D1棱长为a过S做SE垂直CD因为ABCD垂直平面CDD1C1所以SE垂直平面CDD1C1因为四面体PQRS是以RPQ为底面,SE为高RPQ底边长是b,高是aS=a*b/2
用a表示正方体的棱长,正方体的体积计算公式为(a的立方),3a表示(周长的一半?),a的立方代表正方体的体积
解,根据题意得,正方体的体积S正=a*a*a分别用过公共顶点的三条棱中点的平面截该正方体所以每个小三棱锥的三条边,两两垂直,所以,每个小三棱锥的体积S锥=(1/3)*[底面积]*高=(1/3)*[(a
(1)三棱锥B’-ABC是以ABC为底面,BB'为高正方体ABCD-A’B’C’D’中,棱长为a,那么平面ABC的面积=a*a/2=a^2/2BB'=a所以三棱锥B’-ABC的体积=(a^2/2)*a
∵BD∥B'D'A'B∥D'C∴面A'BD∥面CB'D'(分属两个平面的两对相交直线互相平行,则两平面平行)
(1)这个不难,应该是平行的关系(2)BB1⊥平面ABCD,AC⊥BD根据三垂线定理,所以AC⊥B1DAC平行A1C1所以B1D⊥A1C1同理B1D⊥BC1所以B1D⊥平面A1BC1(3)设AC和BD
设正方体为ABCD-A'B'C'D'投影最大的时候,应该是a和面AB'C平行,三个面的投影为三个全等的菱形对角线为√2投影上三条对角线构成边长为√2的等边
共20个表面积60a*a再问:应该是50a*a才对再答:呃..我依然认为是60,a方省略不写了放到正方体里,分别投影6个面每个面是10,那么表面积应为60哦..不包括底面啊,,50..........
设正方体ABCD-A'B'C'D'.沿A'D',D'C',C'C,CB,BA,AA'中点连成得正六边形面积最大,且垂直对角线.S=6*(1/2)*[(√2/2)^2]*(√3/2)*(a^2)=(3*
6*a^2
由MD1平方=A1D1平方+MA1平方,得MD1=√5a/2由CD1平方=CD平方+DD1平方,得CD1=√2a由MC平方=MA平方+AC平方,得MC=3a/2知道三角形三边求面积用海伦定理:P=(a
(1)连接BP,AB垂直平面BCC1B1,所以AP与平面BCC1B1所成的角就是角APB.CC1=4=4CP,CP=1,所以BP=根号17,tanAPB=4根号17/17,即AP与平面BCC1B1所成
(1)取BD中点O,∵在棱长为a的正方体ABCD-A1B1C1D1中,A1D=A1B=2a,AB=AD=a,∴A1O⊥BD,AO⊥BD,∴∠A1OA是二面角A1-BD-A的平面角.(2)∵AO=12A
体对角线为直径d=√a2+a2+a2=√3aS=4π(√3a÷2)2=3πa2
露在外面的5个面的正方体有:10个所以表面积为:10*5*a²=50a²很高兴为你答疑,