在数列an中 9sn=10an-7an
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 13:33:21
Sn=(an+1/an)s1=a1=(a1+1/a1)/2==>a1=1/a1==>a1=1(由于an>0所以a1=-1不合题意)s2=a1+a2=(a2+1/a2)/2==>2a1+a2=1/a2将
a(n+1)=a(n)+2说明这是一个等差数列首项a(1)=-11,公差为2a(n)=a(1)+(n-1)×2=-11+2(n-1)=2n-13所以Sn=[a(1)+a(n)]×n/2=(n-12)n
因为an,Sn,Sn-1/2成等比数列Sn(平方)=an*(Sn-1/2)由an=Sn-S(n-1)Sn(平方)=(Sn-S(n-1))*(Sn-1/2)化简得S(n-1)*Sn=S(n-1)/2-S
S[1]=a[1]=1/2(a[1]+1/a[1]),于是:a[1]=1=√1-√0S[2]=a[2]+1=1/2(a[2]+1/a[2]),于是:a[2]=√2-1,S[2]=√2S[3]=a[3]
∵2√Sn=an+1,∴Sn=(an+1)^2/4∴S(n-1)=(a(n-1)+1)^2/4两式相减,得到an=Sn-S(n-1)=1/4*(an^2-a(n-1)^2)+1/2*(an-a(n-1
解题思路:将an用Sn-S(n-1)表示,整理得到Sn与S(n-1)的关系,归结为等差数列的定义形式解题过程:数列{an}的首项an=1,前n项和sn之间满足,求证{1/sn}成等差数列;并求Sn的表
an=Sn-Sn-1=4n+1(n>=2),a1=2*1+3=5,满足上式,an通项就是4n+1,即证实等差数列
(1)证明:∵Sn-2an=2n,①∴Sn+1-2an+1=2(n+1).②②-①,得:an+1-2an+1+2an=2,∴an+1=2an-2,∴an+1-2an-2=(2an-2)-2an-2=2
an=1/n(n+1)(n+2)=[1/n(n+1)-1/(n+1)(n+2)]/2,a1=1/6所以S1=a1=1/6n>=2时,Sn=a1+a2+...+an=[1/1*2-1/2*3]/2+[1
an=Sn-Sn-1=>an=n^2*an-(n-1)^2*an-1an/an-1=(n-1)/n+1)所以an-1/an-2=(n-2)/n)an-2/an-3=(n-3)/n-1)an-3/an-
n≥2时an=Sn-S(n-1)=n²an-(n-1)²a(n-1)∴an/a(n-1)=(n-1)/(n+1)∴a2/a1=1/3a3/a2=2/4a4/a3=3/5……a(n-
1、an=Sn-S(n-1)所以2Sn-S(n-1)=20482Sn=S(n-1)+20482Sn-4096=S(n-1)+2048-40962(Sn-2048)=S(n-1)-2048(Sn-204
an,Sn,Sn-1/2成等比数列an(Sn-1/2)=Sn^2a2(S2-1/2)=S2^2a2(a2+1/2)=(a2+1)^2a2=-2/3a3(S3-1/2)=S3^2a3(a3-1/6)=(
Sn-a1=48,Sn-an=36,Sn-a1-a2-an-1-an=21,∴2Sn-(a1+an)=84Sn-(a1+an)-(a2+an-1)=21∴2Sn-2Sn/n=84Sn-4Sn/n=21
n>=2时:∵an=2Sn^2/[(2Sn)-1]∴Sn-(Sn-1)=2Sn^2/[(2Sn)-1]两边同时乘以(2Sn)-1并化简得2Sn(Sn-1)+Sn-(Sn-1)=0两边同时除以Sn(Sn
n≥2时,an=Sn-S(n-1)=2Sn²/(2Sn-1)[Sn-S(n-1)](2Sn-1)=2Sn²-Sn-2SnS(n-1)+S(n-1)=0S(n-1)-Sn=2SnS(
n+Sn=2an,所以1+s1=2a1=2s1即s1=a1=1且n+1+S(n+1)=2a(n+1)相减得1+a(n+1)=2a(n+1)-2ana(n+1)=2an+1a(n+1)+1=2an+2=
liman/(Sn^2)=lim(Sn^2-1)/(Sn^2)=1-lim1/(Sn^2)lim(Sn^2)=无穷,所以最后=1
因为6Sn=(an+1)(an+2)(1)所以6Sn-1=(an-1+1)(an-1+2)(2)(1)-(2)则an-an-1=3所以an是等差数列因为6Sn=(an+1)(an+2)可知S1=a1=
Sn=1/3an—2Sn-1=1/3an-1—2Sn—Sn-1=1/3an—1/3an-1an=1/3an—1/3an-1an/an-1=-1/2q=-1/2S1=1/3a1—2a1=1/3a1—22