在平面直角坐标系中,经过(0,根号2)且斜率为k的直线l与椭圆x2 2 y

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 09:14:01
在平面直角坐标系中,经过(0,根号2)且斜率为k的直线l与椭圆x2 2 y
在平面直角坐标系中,直线l1经过A(2,0)且与y轴平行,直线l2经过点B(0,1)且与x轴平行

在平面直角坐标系中,直线L₁经过A(2,0)且与y轴平行,直线L₂经过点B(0,1)且与x轴平行;函数y=k/x(x大于0,k>0且k≠2)与L₁相交于E;与L&#

如图,在平面直角坐标系中,抛物线经过A(-1,0),B(3,0),C(0,-1)三点.

1.AB为边时,只要PQ//AB且PQ=AB=4即可.又知道Q在y轴上,所以点P的坐标为4或者-4时,这是符合条件的点有两个,即P1(4,5/3);P2(-4,7)2.当AB为对角线时,只要线段PQ与

在平面直角坐标系

解题思路:MN的中垂线就是AB,求出AB的直线方程即可解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.co

已知在平面直角坐标系中

解题思路:本题考查了圆周角与圆心角,圆周角与圆外角,圆内角之间的关系;勾股定理,三角函数值等知识,难度较大,特别是第3小题,要利用圆周角与圆外角及圆内角之间的关系,才能得出结论。解题过程:第(2)题的

在平面直角坐标系中,抛物线y=经过A(-1,0)B(3,0)C(0,-1)

(1)∵AB∴设y=a(x+1)(x-3)∵过C∴-3a=-1∴a=1/3∴y=1/3(x+1(x-3)=1/3x²-2/3x-1(2)三种:1)AB为对角线.中心(1,0).∵Q在y轴上,

如图在平面直角坐标系中

从D作AB的垂线,交AB于M,∴DM=y-1,BC=4,MB=1-x,AM=-7-x∴37=(4+y-1)×(1-x)÷2-(-7-x)×(y-1)÷2化简得到:2x-4y+39=0又2x+5y=22

如图,在平面直角坐标系中,抛物线经过A(-1,0),B(3,0),C(0,-1)三点

设y=ax²+bx+c将A,B,C分别代入:0=a-b+c0=9a+3b+c-1=c,a=1/3,b=-2/3∴y=x²/3-2x/3-1=(1/3)(x-1)²-4/3

在平面直角坐标系中,函数Y=-X+1的图像经过哪个象限

画图一看就知了.取最简单的数,比如x=0时,y=1,又x=1时,y=0,所以图像过点(0,1)和(1,0),图像过一、二、四象限.

已知:在平面直角坐标系中

没时间详细解答,给你个思路:1、除开无用条件,原题即是求一点P,P在Y=1/4*X^2上,且P到M(-3,3)的距离加上P到B(0,1)的距离最小2、假设P(x,y),PM=根号[(y-3)^2+(x

如图,在平面直角坐标系xOy中,已知直线l1、l2,都经过点A(-4,0),

(1)就是OA/OB=4/3,而OA长为4,所以,OB长为3,B(0,3).可设l1的方程为y=kx+3,将A的坐标代入得k=4/3,l1的方程为y=(4/3)x+3;(2)△AOC的面积为4,而OA

如图,在平面直角坐标系xOy中,已知直线l1、l2都经过点A(-4,0),

1)就是OA/OB=4/3,而OA长为4,所以,OB长为3,B(0,3).可设l1的方程为y=kx+3,将A的坐标代入得k=4/3,l1的方程为y=(4/3)x+3;(2)△AOC的面积为4,而OA长

如图,在平面直角坐标系中,

(2).a你做错了当0≤x≤5时P(5-x,0)Q不变(0,10+x)5≤x≤10时P(x-5,0)Q(0,10+x)b.△APQ在运动过程中,其面积始终是AP×OQ/2∵△APQ的面积为32平方单位

在平面直角坐标系中,抛物线经过A(-1,0),B(3,0),c(0,-1)三点,

1.由a,b两点可知,对称轴是x=1,于是表达式可写成y=(x-1)的平方-常数值,将c点带入可得到表达式为y=(x-1)的平方-4.2.平行四边形只要满足AB=QP且AB‖QP,或者是AQ=BP且A

在平面直角坐标系中

解题思路:先根据题意确定C点坐标,再利用数量积的计算公式求解即可解题过程:

在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.

(1)设解析式为:y=ax^2+bx+c分别把A(-4,0);B(0,-4);C(2,0)代入得a=1/2b=1,c=-4解析式为:y=x^2/2+x-4(2)过M作ME垂直X轴于E点,交AB与D点,

在平面直角坐标系中,A(0,-4),B(4,2),直线l1经过原点和点B,直线l2经过点A和点B

(1)∵直线y1经过原点,∴设直线l1的解析式:y1=k1x,∵经过点B(4,2)∴4k1=2,解得:k1=12,∴设直线l1的解析式:y1=12x设直线l2的解析式:y2=k2x+b,∵经过点:A(

在平面直角坐标系xoy中,

1、向量a的模可看作点Q到点(0,√3)的距离,向量b的模可以看作点Q到点(0,-√3)的距离;所以IaI+IbI=4可看作点Q到点(0,√3)和点(0,-√3)的距离之和为4,所以点Q的轨迹为以点点

如图所示 在平面直角坐标系xoy中,

(1)C点(√3,-1);D点(√3/2,-3/2)(2)第二个问题估计你说的有点问题,我想你应该是经过O、C、D三点抛物线的解析式吧如果是O、C、D:y=-4/3x²-5√3/3x

如图,在平面直角坐标系中,

解题思路:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PO,PA.分别求出PD、DC,相加即可.解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.