在平面直角坐标系中,点A(1,2)点B(3,1)到直线l的距离分别为1,2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:18:23
在平面直角坐标系中,点A(1,2)点B(3,1)到直线l的距离分别为1,2
如图,在平面直角坐标系中,抛物线经过A(-1,0),B(3,0),C(0,-1)三点.

1.AB为边时,只要PQ//AB且PQ=AB=4即可.又知道Q在y轴上,所以点P的坐标为4或者-4时,这是符合条件的点有两个,即P1(4,5/3);P2(-4,7)2.当AB为对角线时,只要线段PQ与

在平面直角坐标系中,已知A【1-2a,a+1】在坐标轴上,求A点坐标

设(1)点A在x轴上,则有a+1=0,解得a=-1,所以1-2a=3即点A有坐标为A(3,0)(2)点A在y轴上,则有1-2a=0,解得a=1/2,所以a+1=3/2即点A有坐标为A(0,3/2)(3

如图,在平面直角坐标系中,抛物线经过A(-1,0),B(3,0),C(0,-1)三点

设y=ax²+bx+c将A,B,C分别代入:0=a-b+c0=9a+3b+c-1=c,a=1/3,b=-2/3∴y=x²/3-2x/3-1=(1/3)(x-1)²-4/3

如图,在平面直角坐标系中,存在点A(-3,1),点B(-2,0).

这道题是不是缺条件,既然是求一个四边形面积应该是封闭的再问:没有啊。条件就这些。。再答:我会了答案是1再问:求过程!QAQ再答:连接AA撇交Y轴于点cAO=A撇O=3AA撇=6同理BB撇=4OC=1根

在平面直角坐标系XOY中,直线l1过点A(1,0)且与y轴平行.

存在∵当反比例函数过点P时K=2,且此时以M、E、F为顶点不能构建三角形∴分两种情况讨论当k<2时,(作图,图我就不画了)由图可得以M、E、F为顶点的三角形与△PEF全等,只可能为△MEF≌△PEF,

如图,在平面直角坐标系中,三角形AOB为等腰直角三角形,A(4,4).1,求B点坐标;

因为楼主没有给出图,所以我把能想到的B 点列出来了,如图所示:1)三角形 OAB ,B 点坐标(4 ,0)2)三角形 OAB‘ ,

在平面直角坐标系xOy中,抛物线y=1/4x²+bx经过点A(2,-4)

(1)∵抛物线y=¼x²+bx经过点A(2,-4)∴1+2b=-4解得:b=-5/2∴抛物线的解析式是y=¼x²-(5/2)x(2)∵y=¼x

在平面直角坐标系中,已知点A(-5

如图,①当点C位于y轴上时,设C(0,b).则(5)2+b2+(−5)2+b2=6,解得,b=2或b=-2,此时C(0,2),或C(0,-2).如图,②当点C位于x轴上时,设C(a,0).则|-5-a

在平面直角坐标系中,描点A(-2,3),B(-2,-1)

/>矩形∵|AB|=|3+1|=4|BC|=|-2-1|=3|CD|=|3+1|=4|AD|=|-2-1|=3∴|AB|=|CD||BC|=|AD|∴四边形ABCD为平行四边形|AC|=√[(1+2)

在平面直角坐标系中,抛物线经过A(-1,0),B(3,0),c(0,-1)三点,

1.由a,b两点可知,对称轴是x=1,于是表达式可写成y=(x-1)的平方-常数值,将c点带入可得到表达式为y=(x-1)的平方-4.2.平行四边形只要满足AB=QP且AB‖QP,或者是AQ=BP且A

在平面直角坐标系中

解题思路:先根据题意确定C点坐标,再利用数量积的计算公式求解即可解题过程:

如图,在平面直角坐标系中,点A为y轴正半轴上的一动点

设A(0,a),a>0,则B(-1/a,a),C(k/a,a)OB的方程:y=[a/(-1/a)]x=-a²x令x=k/a,y=-ka,D(k/a,-ka)反比例函数:y=-k²/

在平面直角坐标系中,若点A(1,3) 点B(1,-1),则AB=(

AB的平方=A点与B点横纵坐标差的平方和=(1-1)平方+(3-(-1))平方=16.AB=4

在平面直角坐标系中作以点A(-1,0),B(2,0),C(1,3).

先说答案:分别为18,9/2,9/2.(1)扩大2倍后三点坐标分别为:A(-2,0)B(4,0)C(2,6)则所得新三角形的底=AB=6,高=C点纵坐标=6,面积=底*高/2=6*6/2=18;(2)