在平面四边形ABCD,连接对角线BD,已知CD=9,BD=16,BDC=90
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:20:21
过d点画垂直线,过a点画垂直线,用和坐标轴形成的矩形面积6减去三个三角形面积1,1/2,1,得出四边形面积3.5
显然题目错应为:求证:平面PAC⊥平面PBD.证明:因PA⊥平面ABCD,则:PA⊥BD,又四边形ABCD是菱形,从而据菱形的性质:两对角线AC⊥BD.故BD⊥平面PAC,又因为BD属于平面PBD,从
首先要限定四边形ABCD在同一个平面上,不是空间四边形.这题可以用反证法证明.投影的基本属性是:1)原来平行的直线的投影依旧是平行的.2)平面上两条不同的直线,投影也是不同的.从题目可知A1B1//C
在平行四边形ABCD中,AE=EB,CF=2FB,连接CE、DF相交于点,AM=mAB+nAD,求实数m、n的乘积确定题目无误!实数m、n的乘积3/4*1/2=3/8利用比例线段的有关知识可知AM延长
(1)CF中点假设为G,EG//BD所以BD//平面CEF(2)45°得到,CD=DE再问:能在详细点吗?再答:(1)OG//AF,OG⊥平面ABCD,OG=AF/2=DE,ODEG是个矩形,所以EG
1,y=二分之三x+42,y=二分之三x减23,y=二分之一x+1(ab解析式)4,y=4
设交点为Q则Q∈EH且Q∈FG因为EH包含于平面ABDFG包含于平面BCD所以Q∈平面ABD且Q∈平面BCD因为平面ABD∩平面BCD=BD根据公理:如果两个不重合的平面有一个公共点,那么它们有且只有
如图示,连结AC和BD,相交于点O,∵四边形ABCD是菱形,∴AC⊥BD,∵PA⊥平面ABCD,∴PA⊥BD,且PA∩AC=A,∴BD⊥平面PAC,∴平面PAC⊥平面PBD.
证明:∵AB+CD≤AC+CD∴AB≤AC
证明:过B点作BE⊥AC于E∵平面ABC⊥平面ACD∴BE⊥平面ACD∵CD∈平面ACD∴BE⊥CD∵AB⊥平面BCD CD∈平面BCD∴AB⊥CD∵AB∩BE=B,AB∈平面A
(1)证明:因为AD//BC,∠ABC=90,所以有AD⊥AB,又平面PAB⊥平面ABCD,且AB为交线,所以可证AD⊥平面PAB,根据线面垂直的性质有AD⊥AP;同理可证AB⊥AP,又AB和AD都在
过点D做垂线交AC于H,则三角形ADC面积为1/2DH*AC,三角形DEG为1/2DH*EG,而EG=1/2AC,故面积是三角形ADC的1/2,同理三角形BEG是三角形ABC面积的一半,故四边形BGD
解题思路:计算解题过程:亲爱的同学,题目中的图片看不见。请重新发给我,好吗?最终答案:略
(1)判断四边形的形状四边形A1B1C1D1是(矩形)四边形A2B2C2D2是(菱形)四边形A2009B2009C2009D2009是(矩形)(2)四边形A1B1C1D1的面积(12)四边形A2B2C
(1)∠ACB+∠ADB=180°∠CAD+∠CBD=180°∠ABC=∠BAC=60°∠ACB=60°三角形ACB是等边三角形因为四边形ABCD四点共圆,且∠ADC和∠BDC所对的弧的弦(AC=BC
(1)D的坐标为(2,1)(2)2秒后所得的四边形A1B1C1D1四个顶点的坐标各向右平移2个单位即x轴加2,所以A1(-1,1)B1(-1,3)C1(4,3)D1(4,1)(3)设为x秒后,平移后△
解题思路:利用三角形全等求证。解题过程:解:(1)①②④⇒AD∥BC;证明:在AB上取点M,使AM=AD,连接EM∵AE平分∠BAD∴∠DAE=∠MAE
不可以.原因在平面内一个四边形两对角是90度,则在平面内一个四边形两对角之和180度.即该四边形四点共圆,你做出一个圆,任取一条直径,在该直径的两侧任选两个点,把这两个点与直径的两个端点连结起来,则这