在多面体ABCD中,ABCD为菱形,角DCB=60度,三角形为正三角形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 22:07:31
(Ⅰ)证明:取AB的中点M,连接GM,MC,G为BF的中点,所以GM∥FA,又EC⊥面ABCD,FA⊥面ABCD,∴CE∥AF,∴CE∥GM,∵面CEGM∩面ABCD=CM,EG∥面ABCD,∴EG∥
V﹙ABCDEF﹚=V﹙D-AGFE﹚+V﹙F-GBCD=1.5×2×3/3+﹙3/4﹚×3×2/3=7.5希望采纳哦!
作ER⊥AD FS⊥BC则ER=FS=√3/2 RS∥AB∥EF ERSF是等腰梯形,作RG⊥EF SH⊥EF&
A√2/3高=1/√2,体积=(1/2)(1/√2)×1×1[中段三棱柱]+(1/2)(1/√2)×1×1×(1/3)[两端合成四面体]=√2/3
(I)设AC与BD交于点G,则G为AC的中点.连EG,GH,由于H为BC的中点,故GH‖AB且GH=AB又EF‖AB且EF=AB∴EF‖GH.且EF=GH∴四边形EFHG为平行四边形.∴EG‖FH,而
(Ⅰ)∵平面ABEF⊥平面ABCD,平面ABEF∩平面ABCD=ABBC⊂平面ABCD,而四边形ABCD为矩形∴BC⊥AB,∴BC⊥平面ABEF∵AF⊂平面ABEF∴BC⊥AF∵BF⊥AF,BC∩BF
如图多面体ABCDEF中,底面ABCD是正方形,AF⊥平面ABCD,DE‖AF,AB=DE=2.(1).求证:BE⊥AC(2).点N在BE上,当BN的长度为多少时直线CN于平面ADE成30°角?(1)
1.BD=2AD=8AD=4AB=4根号5在△ABD中AB^2=BD^2+AD^2所以BD⊥AD平面PAD垂直于平面ABCD,所以BD⊥平面PADBD在平面MBD内,所以面MBD垂直于平面PAD2.三
(1)CF中点假设为G,EG//BD所以BD//平面CEF(2)45°得到,CD=DE再问:能在详细点吗?再答:(1)OG//AF,OG⊥平面ABCD,OG=AF/2=DE,ODEG是个矩形,所以EG
连接BE、CE则四棱锥E-ABCD的体积VE-ABCD=1/3×3×3×2=6,又∵整个几何体大于四棱锥E-ABCD的体积,∴所求几何体的体积V求>VE-ABCD,故选D.
设AC与BD的交点为O,连接OH和OE因为H为BC的中点,O也为BD的中点,根据中位线定理可知OH平行且等于½DC,即OH平行且等于½AB,即OH平行且等于EF,所以平面O
证明:(1)∵EF∥BC,AD∥BC,∴EF∥AD.在四边形ADEF中,由FA=2,AD=3,∠ADE=45°,可证得EG⊥DE,又由FA⊥平面ABCD,得AF⊥CD,∵正方形ABCD中CD⊥AD,∴
现在不方便画图,给你说一下思路吧:1、你可以把AB往两端各延长0.5、把CD也往两端各延长0.5,然后新端点分别跟E、F西点连接.这样,就可以得到一个三棱柱;三棱柱的体积可以用端面积乘以长来计算;2、
(1)证明:设AB=a,由题设,QA⊥AD,QA⊥CD,知AQ为棱锥Q-ABCD的高,所以棱锥Q一ABCD的体积V1=13a3,棱锥P-DCQ的体积V2=VC-DPQ=13•12•2a•a•a=13a
A√2/3高=1/√2,体积=(1/2)(1/√2)×1×1[中段三棱柱]++(1/2)(1/√2)×1×1×(1/3)[两端合成四面体]=√2/3
从题目的条件,体积是确定的﹙祖衡定理﹚.可以在正方体中作这个图形. V﹙ABCDEF﹚=V﹙D-AGFE﹚+V﹙F-GBCD)=1.5×2×3/3+﹙3/4﹚×3
简单写一下哈:(1)∵ABCD是正方形,M、N是AB、CD中点∴MN∥BC∵MB=2=EF,EF∥AB∴BFEM是平行四边形∴ME∥BF∵MN∩ME=平面MNE,BC∩BF=平面BCF∴平面MNE∥平
分割一下就好了7.5再问:你会做??你几年级的?再答:刚高考过你呢?再问:哦考的怎么样?我还是高一马上就高二了再答:还可以吧再问:呵呵我知道了行了难得有缘就采纳你的吧
过点F做平行于平面EAD的截面,多面体被分为一个三棱柱和一个四棱锥两部分,其中三棱柱的体积等于棱长乘以垂直于棱的截面面积,所以V(三棱柱)=1/2*3/2*2*3=9/2V(四棱锥)=1/3*2*3*