在圆中,A.D是圆的切点,BP=DP,求点B是圆的切点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:52:45
你的证明是错误的!△OCD与△OAD全等就不够条件,根据你作的辅助线,过点O作CD的垂线,这个垂足是否是C点,这是要证明的,通常这样的证明比较麻烦.比较好理解的证明是:连结OC、AC∵AB是直径∴∠A
证明:连接AC、OC.∵AB是直径,点C在⊙O上.∴∠ACB=90°AC⊥PB在Rt⊿ACP中.点D是PA的中点.∴AD=PD=CD则:∠PCD=∠P,∠ACD=∠DAC.∵OA=OC∴∠OAC=∠O
由切线长定理:PA的平方=PD*PE4*4=2*PE所以:PE=8PE=PD+2R8=2+2R所以:R=3
可以,但似乎太麻烦了.如下证明可否:连结AC、DC,∵AB是直径,∴∠ACB=90°,∴∠ACP=90°,∵D是AP中点,∴DA=DC,∴∠DAC=∠DCA,∵OA=OC,∴∠OAC=∠OCA,∴∠D
因BO=6,AO=8则AB=10又容易证明△ADC相似于△ABOAC/AO=AD/AB(AO-CO)/AO=(AB-BD)/AB1OC+OB=9,OC=9-OB2将2代入1可得BD=5用三角形相似可求
因为AB⊥OP于D,所以AD=AB/2=4CM,在直角三角形AOD中,由勾股定理,得AO^2=AD^2+OD^2=25,解得AO=5,因为PA为圆O的切线,所以∠PAD=∠AOP所以△APD∽△OAD
证明:(1)∵AC是圆O的直径∴∠ABC=90°∵AD⊥BP∴∠ADB=90°∴∠ABC=∠ADB∵PB是圆的切线∴∠ABD=∠ACB在△ABC和△ADB中:∵∠ABC=∠ADB,∠ABD=∠ACB∴
∵AC是直径∴∠ABC=90°∵AD⊥BP∴∠ADB=90°∴∠ABC=∠ADB∵PB是圆的切线∴∠ABD=∠ACB△ABC和△ADB中:∵∠ABC=∠ADB,∠ABD=∠ACB∴△ABC∽△ADB.
因为AC为圆O的直径所以角ABC=90度因为AD⊥BP所以角ADB=90度因为角ACB所对弧AB角ABD所对弧AB所以角ACB=角ABD所以△ABP∽△ABD
连接OP,交AB于点E∵PA,PB是⊙O的切线∴PO垂直平分AB∵PA是⊙O的切线,∴OA⊥PA∵PA=12,OA=5根据勾股定理得OP=13利用三角形的面积可得:PA×AO=PO×AE∴AE=60/
联结OD、OC,因D是AP的中点,O是圆心,所以OD是三角形APB的中位线,因此角ADO与角P相等,角PCDD等于角CDO,角OCB等于角DOC,角PCD加角DCA等于90°,所以角ODC加角DCO等
证明:【D应为AP的中点】连接AC则∠ACB=90º【直径所对的圆周角是直角】∴∠PCA=90º∵D是AP的中点【根据直角三角形斜边中线等于斜边的一半】∴CD=AD=DP∴∠DAC
由勾股定理得BP=10连接AC,可证三角形ABC与PBA相似,可得BC=18/5,CP=32/5,AC=24/5过C作AP垂线,垂足为E三角形PCE与PBA相似,可得CE=96/25sinADC=CE
连接AC,三角形ACP为直角三角形,D为直角三角形斜边中点,则AD=DP=CD,角DAC=角DCA,又角OAC=角OCA,故角OCD=角OAD,即为直角再问:为什么ACP是直角三角形再答:因为在三角形
设圆O的半径为R则BC=2R则PB=PC+BC=4+2R因PA切圆O于A则AP²=PC·PB36=4×(4+2R)R=5/2再问:再答:设圆O的半径为R∵AP切圆O于A∴AP²=P
勾股定理得到:AB=5设半径是R,则有R=(AC+BC-AB)/2=(4+3-5)/2=1或者说利用面积来做,就是:S(ABC)=1/2AC*BC=6而S(ABC)=1/2AC*R+1/2BC*R+1
为锐角三角形,△DEF的三个内角∠AFD=∠DEF,∠BDE=∠DFE,∠CEF=∠EDF.(这是一个性质下面附图)而∠AFD,∠BDE,∠CEF分别是等腰△ADF,等腰△BDE,等腰△CEF的底角,
第一题证全等,△COP与△BOP,所以CP=BP,又因为切线长相等,所以AC=BD第二题,CD与圆相切.作平行于CD的直线EF,直线与圆相切于M,且分别交AP、BP于E、F.可以证明EM=EA、FM=
(1)如图,连结BD易知AC⊥BD,DE⊥BD,∴AC∥DE.(2)易知,∠EDF=∠ACD=∠ACB,AC=3√5,∴sin∠EDF=1/√5
如图,作OE⊥MN于E.∵大半圆的弦AB与小半圆相切,∴CD为⊙C的半径,∴OC⊥MN,又MN∥AB,∴四边形DCOE为矩形,∴OE=CD,∵OE⊥MN,∴ME=NE=12MN=12a,在Rt△OEN