在圆o中弦ab与弦cd相交于点e,ab等于cd求证bd等于ca
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:02:37
BD=AC,所以角AOC=BOD,所以角AOB=AOC+COB=BOD+COB=COD,所以AB=CD
问AD=?吗AD=6AB是直径,所以角ADB是直角,作点0到BD的的垂线垂足为H,则H为BD中点由中位线定理可得AD=6
证明:作OM⊥AD于点M,ON⊥BC于点N∵OE平分∠AEC∴ON=OM∴AB=CD(在同圆中,弦心距相等,则弦相等)再问:如何证明弦心距相等的两条弦相等?再答:如图,OE,OF是弦心距,OE=OF证
首先可以证明△ADC≌△DAB∠ACD=∠ABD因为是同弧所对的圆周角然后∠DAC=∠ADB这是因为AB=CD那么灯弧所对的圆周角也相等再加上AB=CD则△ADC≌△DAB(AAS)那么AC=DB又因
(1)在圆O中∠PDB=∠CAB=40°∠APD=∠B+∠PDB(三角形外角定理)∠APD=65°所以∠B=25°(2)过O作OM⊥BD于M,由垂径定理得M是BD的中点,O是AB的中点,所以OM是△A
连接BE,则∠FEP=90°-∠PEB=90°-∠EAB=∠F,从而PE=PF.
证明:△∽△≌△∠⊥连接AO、BO、CO、DO△APO和△DPO中:AO=DO=R∠APO=∠DPO………………(1)PO公共边所以:△APO≌△DPO所以:AP=DP……………………(2)∠APC=
因为:角ADE=弧AC,角CBE=弧AC所以:角ADE=角CBE,又:角AED=角BEC所以:三角形ADE相似于三角形BCE即:AE/CE=DE/BE所以:AE*EB=CE*DE
正好我也做这题,过程是这样的:过O作OE⊥AB于E,OF⊥CD于F∵弧AC=弧BD,弧AD=弧AD∴弧CD=弧AB∴CD=AB∴OE=OF用H.L证RT△OEP≌RT△OFP得PO平分∠CPB
OF=1,CD=4倍根号2因为:AB=AE+BE=6OA=3OE=OA-AE=2角AEC=30度所以,OF=1/2*OE=1CF^2=OC^2-OE^2=3^2-1^2=8CF=2倍根号2CD=2*C
∵AB=CD∴弧AB=弧CD(在同圆中,弦相等所对应的弧也相等)∴弧BD=弧AC∴BD=AC(在同圆中,弧相等所对应的弦也相等)∵弧AD=弧AD∴∠ABD=∠ACD(同弧所对的圆周角相等)∴△AEC≌
连接bc,abc和dcb全等,可证再问:第二问详细再答:继续可证deb和aec全等(角角边),be=ce,连co,bo,sss,可得,beo全等ceo,对称
∵四边形ABCD内接于圆O∴∠PBD=∠PCA(内接于圆的四边形的角与对应的外角相等)∠PDB=∠PAC,∵∠P=∠P∴△PBD相似于△PCA
证明:(1)过O点作OM⊥AB于M,ON⊥CD于N则∠OMP=∠ONP=90º又∵∠1=∠2,OP=OP∴⊿OMP≌⊿ONP(AAS)∴OM=ON∴AB=CD【弦心距相等,弦相等】(2)接用
(1)证明:∵AB=CD,∴AB=CD.∴AB-AD=CD-AD.∴BD=CA.∴BD=CA.在△AEC与△DEB中,∠ACE=∠DBE,∠AEC=∠DEB,∴△AEC≌△DEB(AAS).(2)点B
作OE垂直AB于点E,由于AB垂直CD且∠APO=∠DPO,所以∠APO=45°,又OP=根号2,所以OE=1,所以AE=根号(OA平方-OE平方)=根号3,所以AB=2倍根号3
证明:∵AB=CD,∴弧DAC=弧BDA∴弧BD=弧AC.∴BD=AC,∠B=∠C.又∵∠BED=∠CEA,∴△AEC≌△DEB(AAS).
证明:(1)∵弧AD=弧CB,∴∠MCA=∠MAC.∴△MAC是等腰三角形.(2)连接OM,∵AC为⊙O直径,∴∠ABC=90°.∵△MAC是等腰三角形,AM=CM,OA=OC,∴MO⊥AC.∴∠AO