在圆o中半径oa垂直于ob弦ac垂BD于点e

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:07:01
在圆o中半径oa垂直于ob弦ac垂BD于点e
在圆O中,半径OA垂直OB,C、D是弧AB的三等分点,AB分别交OC于点E、F.求证:AE=BF=CD

连接B、D,延长BO,DO与圆交于G点和H点.因为D,C为弧AB的三等分点,所以角BOD=30度,0A=OB且OA垂直OB所以角OBA=45度,所以角BFD=30+45=75度.有因为角BDO=(18

1 如图1,OA,OB是圆O的两条半径,且OA垂直OB,点C是OB的延长线上的任意一点,过点C作CD切圆O于点D,连接A

1.连接OD∵AO垂直于OB∴∠AOB=90°∵D为圆O的切点,且OD为半径∴∠0DC=90°∵A0=0D∴∠0AE=∠ODE又∵∠A0B=∠0DC=90°∴∠0DC-∠0DE=∠A0B-∠0AE=∠

已知圆O中两条半径OB垂直于OA,M为弦AB的中点,MC//OA,交弧AB于C,交OB于D,求证弧AC=1/3弧AB

如图:连结OC∵M是AB的中点  DC‖AO∴D是BO的中点∴DO=1/2BO∵CO=BO∴DO=1/2CO∵DC‖AO∴∠ODC=90°∵DO=1/2CO,∠ODC=90°∴∠D

已知圆O中两条半径OB垂直于OA,M为弦AB的中点,MC//OA,交弧AB于C,交弧OB于D,求证弧AC=1/3弧AB

∠AOC=∠OCD(平行,内错角)而AM=BM故OD=DB=r/2=OC/2因此∠OCD=30∠BOC=90-30=60∠AOC=∠OCD=30=(1/3)∠AOC因此弧AC=(1/3)弧AB

OA OB 是圆O的半径 OA垂直于OB C为OB延长线上一点 CD切圆O于点D E为AD与OC

分析:根据切线的性质,以及直角三角形的性质,直角三角形的两锐角互余,即可证明∠ADC=∠AEO,从而得到∠DEC=∠ADC,根据三角形中,等角对等边即可证明△CDE是等腰三角形,即CD=CE.∵CD切

如图所示是圆O的部分图形,OA、OB是圆O的两条互相垂直的半径,点M是弦AB的中点,过点M作MC平行于OA,交弧AB于点

延长CM交OB于点D,连接OC因为CD∥OA,M为中点,所以D为OB中点,且∠ODC=90°所以OD=OB/2=r/2,因为OC=r所以∠OCD=30°(rt△中,30°角所对的……)因为CD∥OA,

如图,在圆O中,半径OA垂直于OB,C、D为弧AB的三等分点,AB分别交OC、OD于点E、F,下列结论:1、∠AOC=3

1.因为C、D为弧AB的三等分点,所以三段圆弧所对应的圆心角相等,都为30°,故∠AOC=30°正确2.AO=BO,∠AOC=∠BOD,∠OAE=∠OBF所以三角形AOE全等于BOF,所以OE=OF,

如图,CD为圆O的直径,OA,OB是圆O的半径,OA垂直于OB,构成一个直角圆心角,作AE垂直于CD于E,BF垂直于CD

三角形OAB为等腰直角三角形,斜边5倍根号2,则圆的半径为5,角AOE=角OBF,则直角三角形AOE全等于OBF,OE=BF,AE=OFCE+AE+BF+DF=CE+OE+OF+DF=CD=圆直径=1

OA和OB为圆O的半径,且OA垂直OB,延长OB到C,使BC=OB,CD切圆O于D,AD的延长线交OC延长线于E,则角E

连接OD则OA=OB=OD=半径∵CD是圆O的切线∴∠ODC=90º∵BC=OB∴OC=OB+BC=2OB=2OD∴∠OCD=30º【直角三角形中,30º角所对的直角边等

在⊙O中,OA为⊙O的半径,OB垂直于OA,与弦AD的延长线交于点B,OA=6,OB=8,求AD的长

AB=10,C为OB与○O的交点.OC=6BC=2根据切割线定理.BC×(BO+半径)=BD×AB2×14=BD×10BD=2.8AD=10-2.8=7.2圆心到两弦的距离分别为9和12梯形面积=(1

如图,OA、OB是⊙O的半径,且OA垂直OB,操作:在OB上取任意一点P,AP的延长线交⊙O于C,过点C作⊙O的切线CD

DC=DP.连接OC.因为CD是圆的切线,所以OC⊥CD,即∠DCP+∠ACO=90°又OA⊥OB,有∠A+∠APO=90°.OA=OC,有∠A=∠OCP,因此∠DCP=∠APO=∠DPC,于是DC=

已知OA和OB是圆O的两条半径,且OA⊥OB,弦AD交OB于P,过点D的切线交OB的延长线于C,若PD=DC,则∠A=

延长AO交⊙O于E,连结DO、DE.∵PD=DC,∴∠C=∠CPD,∴∠CDP=180°-2∠C.∵DC切⊙O于D,∴∠CDO=90°,∴∠CDP+∠ODA=90°,∴180°-2∠C+∠OCA=90

如图,在圆O中,半径OA垂直于OB,C是OB的延长线上一点,AC交圆O于点D,求证:角DOA=2角C

证明:过圆心O作OE⊥AC于E∵OA=OD,OE⊥AC∴∠AOE=∠DOE=∠DOA/2(三线合一),∠A+∠AOE=90∵OA⊥OB∴∠A+∠C=90∴∠AOE=∠C∴∠DOA/2=∠C∴∠DOA=

已知在圆O中,半径OA⊥OB,弦AC⊥BD于E,求证:AD‖BC.

小呆D蘑菇T糖,你好:要证AD‖BC,需要证∠D=∠DBC,只需应用圆心角、圆周角、弧的关系便可证得.证明:∵OA⊥OB,即∠AOB=90°∴∠D=∠C=45°∵AC⊥BD,即∠BEC=90°∴∠EB

如图在O中已知弦AC=弦CB,CD垂直OA于D,CE垂直OB于E求证CD=CE过程要详细

连接OC⌒  ⌒AC= BC∠COD=∠COE∠ODC=∠OEC=90°OC=OC△COD≌△COE所以CD=CE

在圆o中 半径OA垂直OB,E为OA延长线上一点,BC交OE于D,且EC=ED.求证:EC为圆O切线.

证明:∵OC=OB∴∠OCD=∠OBD∵EC=ED∴∠ECD=∠CDE∵∠CDE=∠BDO∴∠ECD=∠BDO∵OA垂直OB∴∠OBD+∠BDO=90°∴∠OCE=∠OCD+∠ECD=∠OBD+∠BD

如图,圆O中半径OA垂直OB.弦BC//AD,AC.BD交于点H,求证AC垂直BD

连接AB,所以角ACB,ADB同为圆周角,而圆心角AOB为90度,因此两圆周角为45度.因为AD//BC所以角CAD为45度,因此角BHD为90度,所以垂直.不晓得这么写看不看的懂……哎