在圆o中 半径oa垂直ob,过oa的中点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 19:25:08
在圆o中 半径oa垂直ob,过oa的中点
:在园o中,半径OA垂直OE,弦AB交OE于D,过B做圆O的切线,交OE延长线于C,OA等于3BC等于4,求AD长多少

首先BC=4/3OB=OA=4利用BC与圆O相切,知道∠OBC=90°△OCB中利用勾股定理求得OC=4/3(根号10)下面说明CB=CD∠BCO=90°-∠BOC=∠AOB=180°-∠OAB-∠O

在三棱锥O-ABC中,三条棱OA,OB,OC两两垂直,且OA>OB>OC,分别经过三条棱OA,OB,OC作一个截面平分三

一个三棱锥的底面面各设为s截面面积为x平分的话有,可以根据三棱锥体相似来做,(面相似面积比等于边长比的平方,体相似体积比等于棱边长的立方)因此有x=(三次根号(1/2))^2×s=三次根号(1/4)*

1 如图1,OA,OB是圆O的两条半径,且OA垂直OB,点C是OB的延长线上的任意一点,过点C作CD切圆O于点D,连接A

1.连接OD∵AO垂直于OB∴∠AOB=90°∵D为圆O的切点,且OD为半径∴∠0DC=90°∵A0=0D∴∠0AE=∠ODE又∵∠A0B=∠0DC=90°∴∠0DC-∠0DE=∠A0B-∠0AE=∠

OA OB 是圆O的半径 OA垂直于OB C为OB延长线上一点 CD切圆O于点D E为AD与OC

分析:根据切线的性质,以及直角三角形的性质,直角三角形的两锐角互余,即可证明∠ADC=∠AEO,从而得到∠DEC=∠ADC,根据三角形中,等角对等边即可证明△CDE是等腰三角形,即CD=CE.∵CD切

在圆O中 圆心角AOB=60度 C是弧AB上一点 过点C作CM垂直于OA于M,作CN垂直于OB于N

延长CM交圆O于D,延长CN交圆O于E,连结DE由圆心角AOB=60度,CM垂直于OA,CN垂直于OB可知角MCN=120度=角DCE所以弦DE长固定由于CM垂直于OA,CN垂直于OB所以CM=MD,

如图所示是圆O的部分图形,OA、OB是圆O的两条互相垂直的半径,点M是弦AB的中点,过点M作MC平行于OA,交弧AB于点

延长CM交OB于点D,连接OC因为CD∥OA,M为中点,所以D为OB中点,且∠ODC=90°所以OD=OB/2=r/2,因为OC=r所以∠OCD=30°(rt△中,30°角所对的……)因为CD∥OA,

如图所示是圆O的部分图形,OA.OB是圆O的两条互相垂直的半径,点M是弦AB的中点,过点M做MC//OA,交弧AB于点C

过M、C作ME⊥AO于E,CF⊥AO于F,连OC∵M为AB的中点,∴ME=1/2 OB,易证MEFC为矩形∴CF= 1/2 OB= 1/2 OC,∠C

如图,CD为圆O的直径,OA,OB是圆O的半径,OA垂直于OB,构成一个直角圆心角,作AE垂直于CD于E,BF垂直于CD

三角形OAB为等腰直角三角形,斜边5倍根号2,则圆的半径为5,角AOE=角OBF,则直角三角形AOE全等于OBF,OE=BF,AE=OFCE+AE+BF+DF=CE+OE+OF+DF=CD=圆直径=1

已知,如图,在圆O中,半径OA⊥OB,BC//AD 求证AC⊥BD

证明:∵BC平行AD.∴∠DAC=∠BCA=(1/2)∠AOB=45度;又∠ADB=∠BCA=45度.∴∠ADB+∠DAC=90度,故AC⊥BD.

如图所示是⊙O的部分图形,OA、OB是圆O的两条互相垂直的半径,点M是弦AB的中点,过点M作MC∥OA,交AB于点C.求

证明:连结OC,延长CM交OB于D,如图,∵点M是弦AB的中点,MC∥OA,∴点D为OB的中点,∴OD=12OB=12OC,在Rt△OCD中,∠DOC=30°,∴∠AOC=30°,∴∠AOC=13∠A

OA和OB为圆O的半径,且OA垂直OB,延长OB到C,使BC=OB,CD切圆O于D,AD的延长线交OC延长线于E,则角E

连接OD则OA=OB=OD=半径∵CD是圆O的切线∴∠ODC=90º∵BC=OB∴OC=OB+BC=2OB=2OD∴∠OCD=30º【直角三角形中,30º角所对的直角边等

在圆O中,半径为4,角AOB=60度.点C为弧AB中点,CM垂直OA,CN垂直OB,垂足分别为点M,N

(1)由于C为弧AB中点,则∠MOC=∠COB(等弧所对的圆心角相等)又CM垂直OA,CN垂直OB,则易知△OMC≌△ONC则OM=ON,又∠AOB=60度,则△OMN为正三角形.又OC=4,∠AOC

在⊙O中,OA为⊙O的半径,OB垂直于OA,与弦AD的延长线交于点B,OA=6,OB=8,求AD的长

AB=10,C为OB与○O的交点.OC=6BC=2根据切割线定理.BC×(BO+半径)=BD×AB2×14=BD×10BD=2.8AD=10-2.8=7.2圆心到两弦的距离分别为9和12梯形面积=(1

如图,OA、OB是⊙O的半径,且OA垂直OB,操作:在OB上取任意一点P,AP的延长线交⊙O于C,过点C作⊙O的切线CD

DC=DP.连接OC.因为CD是圆的切线,所以OC⊥CD,即∠DCP+∠ACO=90°又OA⊥OB,有∠A+∠APO=90°.OA=OC,有∠A=∠OCP,因此∠DCP=∠APO=∠DPC,于是DC=

图所示是圆O的部分图形,OA.OB是圆O的两条互相垂直的半径,点M是弦AB的中点,过点M做MC//OA,交弧AB于点C.

过M、C作ME⊥AO于E,CF⊥AO于F,连OC∵M为AB的中点,∴ME=1/2OB,易证MEFC为矩形∴CF=1/2OB=1/2OC,∠COF=30°,∴弧AC=1/3弧AB

如图,在圆O中,半径OA垂直于OB,C是OB的延长线上一点,AC交圆O于点D,求证:角DOA=2角C

证明:过圆心O作OE⊥AC于E∵OA=OD,OE⊥AC∴∠AOE=∠DOE=∠DOA/2(三线合一),∠A+∠AOE=90∵OA⊥OB∴∠A+∠C=90∴∠AOE=∠C∴∠DOA/2=∠C∴∠DOA=

已知在圆O中,半径OA⊥OB,弦AC⊥BD于E,求证:AD‖BC.

小呆D蘑菇T糖,你好:要证AD‖BC,需要证∠D=∠DBC,只需应用圆心角、圆周角、弧的关系便可证得.证明:∵OA⊥OB,即∠AOB=90°∴∠D=∠C=45°∵AC⊥BD,即∠BEC=90°∴∠EB

在圆o中 半径OA垂直OB,E为OA延长线上一点,BC交OE于D,且EC=ED.求证:EC为圆O切线.

证明:∵OC=OB∴∠OCD=∠OBD∵EC=ED∴∠ECD=∠CDE∵∠CDE=∠BDO∴∠ECD=∠BDO∵OA垂直OB∴∠OBD+∠BDO=90°∴∠OCE=∠OCD+∠ECD=∠OBD+∠BD

如图,圆O中半径OA垂直OB.弦BC//AD,AC.BD交于点H,求证AC垂直BD

连接AB,所以角ACB,ADB同为圆周角,而圆心角AOB为90度,因此两圆周角为45度.因为AD//BC所以角CAD为45度,因此角BHD为90度,所以垂直.不晓得这么写看不看的懂……哎