在圆o中 以直径cb为一边作三角形abc ab交圆o于点d
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:15:39
(1)证明:连接OD,∵AC=BC,∴∠ABC=∠BAC,∵OD=OB,∴∠ABC=∠ODB,∴∠BAC=∠BDO,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∵OD为半径,∴直线EF是⊙O的切线;(2
连接OD、OE∵∠B=∠C=60°OB=OD=OE=OC∴∠DOE=60°∴等边△BOD、△OEC、△ODE∴BO=DE=EC
连接oe,af两个相似的直角三角形立现,oc=3,oe=1,算出ec,问题就解决了
(1)证明:∵四边形BCDE是正方形,∴CD=CB,(1分)又∵△ABC中,CA=CB,∴CD=CA,(1分)∴∠CAD=∠CDA;(1分)(2)∵在△ABC外作正方形BCDE又∵∠ACB=20°,∴
太简单了啊!连接OD,OE,由等边三角形OBD得BD=R,由等边三角形OEC得EC=R,由等边三角形ODE得DE=R,所以三者相等!(根据角度判断等边三角形)
oa=ad=ad=ob=bd所以aod=bod=60度aoc=boc=aob=120度所以弧ac=弧cb=弧a
1因为AB/BC=EC/CF角ABC=角ECF三角形ABC相似于三角形EFC2因为角EFC=角CAD三角形ACD相似于三角形FGC角FGC=90度EF是圆C的切线3过M作MH垂直交BC于H连接BMBM
(1)求证:DE⊥ACBC为直径,∠CDB=90°;∠CDA=∠CDB=90°;CA=CB,∠A=∠B,所以∠ACD=∠BCD,∠B=∠CDE,[弧DC所对圆周角=弧DC所对圆切角]∠CDE+∠ACD
如图,AD中点O即半圆的圆心,作辅助线,OE、OC、OF因为E在半圆上,所以OE=OD=2E也在四分之一圆上,所以EC=DC=4加上公共边OC马上我们就可以知道△ODE和△OCE是全等的直角三角形(S
_设圆O半径为r,圆B半径为R.则R=√2rS=½πr²+¼πR²-½*2r²=(π-1)r²连结BN,AC,△MNB∽△MCA,
建立坐标系如图:可得直线AD的方程2x+3y-6=0;AD=根号13.可求直线EF的方程为2x+3y-19=0;令y=0得M的横坐标9.5;CM=2+9.5=11.5再问:永初中的数学知识解答,看看有
证明:连接OD,如右图所示,∵AC=BC,∴∠A=∠ABC,∵OD=OB,∴∠OBD=∠ODB,∴∠ODB=∠A,∴OD∥AC,又∵DF⊥AC,∴∠CFD=90°,∴∠ODE=90°,∴OD⊥EF,∴
解题思路:切线的性质、相似三角形的判定与性质.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.解题过程:
AD平行于CB∠oad=90度因为M点是切点∠OMD也=90度因为是个圆,OA=OM,就是半径,OD共用,边角边三角形OAD全等于OMD得出AD=DM同理可证明BC=CM所以AD+BC=DM+CM=C
BO^2=OC^2+BC^2=6^2+8^2=10^2,所以BO=10又因为圆O半径为AC/2=6,圆B半径为4,即Ro+Rb=6+4+10=BO,所以圆O与圆B相外切
答;由题意可知.A.C.D三点在以B为圆心,a为半径的圆上.圆弧AC所对的圆心角是角ABC=60°.所对圆弧角是角ADC,则等于30°有因为角ADC等同于角ADE是以O为圆心的圆弧角,则圆弧AE对应的
作AH垂直CD于H.∠D=60°,则∠DAH=30°,DH=AD/2=m/2.(直角三角形中30度的内角所对直角边等斜边一半)所以,AH=√(AD^2-DH^2)=(√3/2)m.即圆心O到CD的距离
:(1)连接CF,∵CD、CE的长为方程x2-2(+1)x+4=0的两根;∴CE=2,CD=2;∵∠DCE=90°,∴tan∠CDE=cd∴∠CDE=60°;∵CD是⊙O的直径,∴∠DFC=90°;∴
AE=OE=AO三角形AOE为正三角形,角AOE=60度,角COE=30度,角FOE=120度则AE,CE,EF分别是圆O的内接六边形,正十二边形,正三角形的一边
设以AB、AC为直径作半圆交BC于D点,连AD,如图,∴AD⊥BC,∴BD=DC=12BC=8,而AB=AC=10,CB=16,∴AD=AC2−DC2=102−82=6,∴阴影部分面积=半圆AC的面积