在四面体a bcd中 若ab ac ad 两两垂直垂心o

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 04:00:42
在四面体a bcd中 若ab ac ad 两两垂直垂心o
在四面体ABCD中,E,F分别是棱AD,BC上的点,且

在AC上取一点H,使得AH:HC=1:2,则:在三角形ABC中,BF:FC=AH:HC=1:2,则:HF//AB同理,在三角形ACD中,可得:EH//CD,则:∠EHF所成角就是异面直线AB与CD所成

已知在四面体ABCD中,AB⊥CD,AC⊥BD.求证:AD⊥BC

在四面体内过顶点A作AO⊥底面交底面于O,连结BO、CO、DO并延长,BO交CD于M,CO交BD于N,DO交BC于Q因为AB⊥CD,BO是AB在平面BCD内的射影,所以BM⊥CD同理CN⊥BD,所以O

在正四面体ABCD中E为AD的中点,求CE和面BD所成角的正弦值

你需要画图,问题是怎么样是CE与DB在一个面内答:在AB上取个中点为F,连接EF和FC,现在求所成角正弦就是角FEC因为是正四面体,设AB=2得EF=1CE=CF=根号3cosA=(b^2+c^2-a

在四面体ABCD中,面ABC垂直面ACD,AB垂直BC,AC=AD=2,BC=CD=1,求四面体ABCD的体积

两个面垂直在ABC三角形中作出BE垂直于AC于E则有BE垂直于平面ACDBE=2分之根号3三角形面积ACD=4分之根号15再用体积公式算为8分之根号5要是计算不对见谅我都是口算的跟前没有笔但是算法对着

在四面体ABCD中,截面AEF经过四面体的内接球(与四个面都相切)

证明:因为截面过内接球球心,则VA-EFC=(1/3)(S△AEC+S△AFC+S△EFC)rVA-BEFD=(1/3)(S◇BDEF+S△ADF+S△ABE+S△ABD)r∵VA-EFC=VA-BE

在四面体ABCD中,AB垂直CD,AC垂直BD.求证:AD垂直BC.

作AO⊥平面BCD垂足为O连接BO交DC于M连接CO交BD于N由三垂线定理BM⊥DCCN⊥BDO为△BCD的垂心连接DO则DO⊥BC由三垂线定理BC⊥AD

在四面体ABCD中,E,F分别是AC,BD的中点,若CD=2AB=2,EF⊥AB 空间向量

EF=EA+AB+BFEF=EC+CD+DF==》2EF=AB+CD于是:(AB+CD)⊥AB ==》AB *(AB+CD)=AB^2 + AB*CD=0==>AB*CD = -AB^2=-1 设 r

在四面体ABCD中已知AB垂直CD,AC垂直BD求证AD垂直BC,

过B作BE⊥CD交CD于E,过C作CF⊥BD交BD于F,令BE∩CF=O.∵CD⊥AB、CD⊥BE,AB∩BE=B,∴CD⊥平面ABE,又AO在平面ABE内,∴AO⊥CD.∵BD⊥AC、BD⊥CF,A

在空间四面体ABCD中,AB⊥CD,AD⊥BC,求证AC垂直BD

做AO垂直与底面BCD,所以AO垂直于BC,因为有BC垂直与AD,所以BC垂直于平面AOD,所以DO垂直于BC,同理可证BO垂直与CD,那么O就是底面三角形的垂心所以CO垂直与BD,又AO垂直与BD,

在四面体ABCD中,AB垂直CD.AD垂直BC.求证AC垂直BD

证明:过A作AO⊥平面BCD于H∴AH⊥CD∵AB⊥CD∴CD⊥平面ABH∴CD⊥BH同理BC⊥AH∴H为△BCD垂心∴CH⊥BD(1)又AH⊥平面BCD∴AH⊥BD(2)由(1)(2)BD⊥平面AC

在四面体ABCD中,平面ABC⊥平面ACD,AB⊥BC,AC=AD=2,BC=CD=1.求四面体ABCD的体积.

作DE垂直于AC并交于E.因AB⊥BC,则DE⊥ABC,为四面体的高.且,AC=2,BC=1,有AB=3^(1/2),S(ABC)=3^(1/2)/2(1)在三角形ACD中,AD=2,DC=1,AC=

在四面体ABCD中,AB=AC=BC=BD=CD=1,当此四面体的全面积取得最大值时,求这个四面体的体积

在三棱锥A-BCD中,BC是变量,另外的五条棱都是定值1,四个面的面积中,三角形ADC,和三角形ADB的面积一定,另外两个三角形是全等的,当∠BAC=∠BDC=90º时,三棱锥的全面积最大,

在四面体ABCD中,若AB⊥CD,AD⊥BC.求证AC⊥BD

如图,作AO⊥BCD.O∈BCD.DC⊥AO.DC⊥AB.∴DC⊥BAF.(F∈DC).∴DC⊥BF.同理.∵BC⊥AD,∴DE⊥BC.(O∈DE.E∈BC).O为⊿BCD之垂心,CG⊥BD.(O∈C

在四面体ABCD中,若AB与CD垂直,AD与BC垂直,求证AC与BD垂直.

过A作平面BCD的垂线,交平面于O则BO,CO,DO为AB,AC,AD在该平面上的射影.因为AB与CD垂直,AD与BC垂直根据三垂线定理得BO与CD垂直,DO与BC垂直又因为三角形三条高交于一点,因此

在四面体ABCD中,若棱CD=根号2,其余棱长都为1,试问:在这个四面体中,是否存在两个面互相垂直?并证明.

由题意知:三角形ACD和三角形BCD都是等腰直角三角形,取CD中点E,连结AE,BE,则AE和BE都和CD垂直,而CD是面ACD和面BCD的交线,所以面ACD和面BCD互相垂直.

如图,在四面体ABCD中,E,F分别是棱AD

在BD上取一点H,使得DH=2HB则:AE:ED=BH:HD=1:2BH:HD=BF:FC=2:1则:EH//AB、HF//CD得:∠EHF就是异面直线AB与CD所成角或其补角.在三角形EFH中,EF

如图,在四面体ABCD中,截面PQMN是正方形,则在下列命题中,错误的为(  )

因为截面PQMN是正方形,所以PQ∥MN、QM∥PN,则PQ∥平面ACD、QM∥平面BDA,所以PQ∥AC,QM∥BD,由PQ⊥QM可得AC⊥BD,故A正确;由PQ∥AC可得AC∥截面PQMN,故B正

四面体ABCD中,公共顶点A的三条棱两两互相垂直,且其长分别为1,根号6,3,若它的四个顶点在同一球面...

你先做几条辅助线把这个四面体补成长方体!则我们就能确定圆的半径了!这四面体无非是长方体里几条边和几条对角线组成!2R【1^2+3^2+6】^1/2=4.所以R=2则S=4*PI*R^2=16*PI=4

?四面体ABCD中,公共顶点A的三条棱两两互相垂直,且其长分别为1,根号6,3,若它的四个顶点在同一球面...

补充出其他几条棱就成一个球内接长方体,这三条两两互相垂直的棱就是长方体的长宽高,长方体的对角线,也就是球的直径=根号【1²+(√6)²+3²】=4半径=2球的表面积=4π

在四面体ABCD中,平面ABC⊥平面ACD,AB⊥BC,AC=AD=2,BC=CD=1 求四面体ABCD的体积

作DE垂直于AC并交于E.因AB⊥BC,则DE⊥ABC,为四面体的高.且,AC=2,BC=1,有AB=3^(1/2),S(ABC)=3^(1/2)/2(1)在三角形ACD中,AD=2,DC=1,AC=