在四边形abcd中mn分别是adbc的中点,an和de相交

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 04:07:12
在四边形abcd中mn分别是adbc的中点,an和de相交
在空间四边形ABCD中,对角线AC=BD=2a,M、N分别是AB、CD的中点,若MN=根号2a,则AC和BD所成角?MN

取AD中点G,连接MG,NG.则MG平行BD,NG平行AC,又三角形MNG满足勾股定理,所以有MG⊥NG,所以BD⊥AC,即夹角为90°

如图,在四边形ABCD中,∠BAC=∠BDC=90°,M、N分别是AD、BC中点.求证MN⊥AD

证明:连接AN、DN∵AN、DN分别是直角三角形ABC和直角三角形DBC斜边BC上的中线∴AN=DN=1/2BC∵MN是等腰三角形NAD底边AD的中线∴MN⊥AD(等腰三角形三线合一)

如图在四边形ABCD中,P、M、N、Q分别是AC、AB、CD、MN的中点,AD=BC,求证:PQ垂直MN

证明:因为:P、M、N、Q分别是AC、AB、CD、MN的中点所以:MP=(1/2)BC      NP=(1/2)AD而BC=AD所以:MP

已知空间四边形ABCD中,M,N分别是AB,CD的中点,求证MN

分别取AD中点为E,BC中点为F,连接EM,EN,FM,FN,MN,由三角形的中线性质可知EM=1/2BD,EN=1/2AC,所以即要证明EM+EN>MN,由三角形的基本性质可知成立.

如图,在四边形ABCD中,AB=CD,M.N.P.Q分别是AD.BC.BD.AC的中点,求证:MN与PQ互相垂直平分

证明:连结MP、PN、NQ、QM∵M、N、P、Q分别是AD、BC、BD、AC的中点∴MP=NQ=1/2AB,PN=QM=1/2CD∵AB=CD∴MP=NQ=PN=QM则MPNQ是菱形,所以MN与PQ互

在平行四边形ABCD中,E,F分别是AB,CD上的点,AE=CF,MN分别是DE,BF的中点,求证:四边形ENFM是平行

平行四边形ABCD所以AD=BC,∠BAD=∠BCD(平行四边形对角相等),已知AE=CF所以△AED≌△BCD,所以ED=BF,因为MN分别是DE,BF的中点所以EM=FN=BF/2=ED/2平行四

在空间四边形ABCD中,对角线AC=BD=2a,M.N分别是AB.CD的中点,若MN=(根3)a,则MN与AC所成的角谢

建立空间直角坐标系,设下几个点的坐标,根据关系,应该就能解了.大多数空间问题,还是坐标系解的好.

在四边形ABCD中AB=CD,M,N,E,F分别是BD,AC,BC,MN的中点,求证EF垂直于MN

证明:因为E是BC的中点,M是BD的中点,所以在三角形BCD中,ME是该三角形的中位线,则ME=1/2CD又因为N是AC的中点,所以在三角形ACB中,NE是该三角形的中位线,则NE=1/2AB且AB=

如图,已知在四边形ABCD中,BC//AD,∠A+∠D=90°,M,N分别是BC,AD的中点,求证MN=二分之一(AD-

过M做ME,MF分别平行BA,CD则BMEA,MCDF平行四边形所以BM=MC=AE=FDNE=AN-AE=DN-DF即NE=NFA+C=MEF+MFE=90即EMF=90N中点AD-BC=AE+EN

在空间四边形ABCD中,向量AB=a,向量AC=b,向量AD=c,M、N分别是AB、CD的中点,则向量MN可表示为

选CMN=AN-AM=[AD+DN]-1/2*AB=[AD+1/2(DC)]-1/2*AB=[AD+1/2(AC-AD)]-1/2*AB=1/2(-a+b+c)

如图在矩形abcd中mn分别是adbc的中点pq分别是bmdn的中点四边形mpnq是什么样的四边

四边形MMPNQ是平行四边形证明:因为四边形ABCD是矩形所以AD=BCAD平行BC因为M,N分别是AD,BC的中点所以AM=DM=1/2ADBN=CN=1/2BC所以DM=BN所以四边形BMDN是平

在空间四边形ABCD中,N,M分别是BC,AD的中点,则2MN与AB+CD的大小关系是______.

如图取AC中点H,连接HM,HN,∴MH=12CD,NH=12AB,∴MH+NH=12(CD+AB),在三角形MHN中,MH+NH>MN∴12(CD+AB)>MN,∴AB+CD>2MN.故答案为:AB

在空间四边形ABCD中,M、N分别是AB、CD的中点,设BC+AD=2a,则MN与a的大小关系是(  )

如图取BD中点H,连接HM,HN,∴MH=AD2,NH=BC2∴MH+NH=AD+BC2=a在三角形MHN中,MH+NH>MN∴MN<a故选C

在空间四边形ABCD中,点M.N分别是AD.BC的中点,AC=BD=2a,MN=根号2,求MN与AC

(1)找DC边上的中点F,连接NF、MF.AC//MF,NF//BDMN与AC所成的角为角NMF,MN=根号2,MF=NF=a,则角NMF=arccos根号2/2a(2)AC与BD所成的角AC//MF

初二几何题,要详解.如图,在四边形ABCD中,角BAC=角BDC=90度,M,N分别是AD,BC的中点,证明MN垂直于A

连接AN,DN在直角三角形BAC中,N为中点AN=BC/2在直角三角形CDB中,N为中点DN=BC/2=AN在三角形AND中,DN=AN,M为中点所以MN垂直于AD

已知四边形ABCD中,M,N分别是AD,BC的中点,求证MN

有个结论:MN≤1/2(AB+CD).证明:连接BD,取BD中点O,连接OM、ON,显然当O在BD上时,OM+ON=MN,当O不在MN上时,MN

有关数学的问问问问!已知四边形ABCD中,P是对角线BD上的一点,过P作MN//AD,EF//CD,分别交AB、CD、A

(1)相等,当四边形ABCD是矩形时,由题意可知:a,b分别为矩形AEPM和PNCF的面积,打字母太麻烦了,简单分析一下,对角线分出两个全等三角形,面积肯定相等,六个三角形都对应相等就只剩下两个矩形,

在四边形ABCD中 AB=DC MN 分别是AD BC的中点

如果直线AB与直线CD不交则显然.否则设它们交于F证明FAC、FBC是等腰三角形.

如图在平行四边形ABCD中MN分别为DCAB的中点,∠A=60°,AB=2BC.求证四边形BMDN是菱形

∵AB=2BC(已知条件),BC=AD(由平行四边形ABCD所得),AN=NB(由N为AB的中点得)∴AN=AD∵∠A=60°(已知条件)∴△AND为等边三角形∴DN=AN=NB∵DM=NB,DM//

在四边形ABCD中,对角线AC,BD的中点分别为MN.求证向量AB+AD+CB+CD=MN

证明:以下皆为向量MN=1/2(MB+BN)+1/2(MD+DN)=1/2MB+1/2MD有因为MB=1/2(AB+CB),MD=1/2(AD+CD)代入上式得MN=1/4(AB+CB+AD+CD)将