在四边形ABCD中,连接BD,点E,F分别在AB和CD上,连接CE,AF,CE

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:52:07
在四边形ABCD中,连接BD,点E,F分别在AB和CD上,连接CE,AF,CE
如图,在四边形ABCD中,AB=AD,∠BAD=60°,∠BCD=120°,连接AC,BD交于点E.

(1)∵AB=AD,∠BAD=60°,∴△ABD是等边三角形,∴∠ABD=∠ADB=60°.∵BC=CD,∴△ABC≌△ADC,∴∠BAC=∠DAC=30°,∠ACB=∠ACD=60°.∴∠AEB=∠

已知,在四边形ABCD中,AB=CD,AC=BD,AD≠BC,求证:四边形ABCD为等腰梯形

AB=CD,AC=BD,可推出△ABC全等于△DCB同理,△ABD全等于△DCA则,∠DAB=∠ADC,∠ABC=∠DCB由四边形内角和可得,∠DAB+∠ABC=180°由三角形内角和为180°,可得

.在四边形在四边形ABCD中,对角线AC,BD互相垂直..

B证明:∵E,F,G,H分别是中点∴EF是△ABC的中位线,GH是△ACD的中位线∴EF‖AC,EF=AC/2,HG‖AC,HG=AC/2∴EF‖HG,EH=AG/2∴四边形EFGH是平行四边形同理可

在四边形abcd中.e,f,g,h分别是ab,bc,cd,da的重点,连接对角线ac和bd,容易得出四边形

EFGH是平行四边形.问:1、当AC、BD满足什么条件时,四边形ABCD是矩形?2、当AC、BD满足什么条件时,四边形ABCD是菱形?3、当AC、BD满足什么条件时,四边形ABCD是正方形?是否这样补

在四边形abcd中.e,f,g,h分别是ab,bc,cd,da的重点,连接对角线ac和bd,容易得出四

题目没有写完.补充一下: 在四边形abcd中.e,f,g,h分别是ab,bc,cd,da的重点,连接对角线ac和bd,容易得出四边形EFGH是平行四边形.问: 1、当AC、BD满足

如图:在四边形ABCD中,G是对角线BD上一点,连接AG交DC的延长线于F.求证:AG平方=GE乘以GF

应该是平行四边形ABCD.在平行四边形ABCD中,DA//BC,有△AGD∽△EGB,那么有AG/GE=DG/BGAB//CD,有△AGB∽△FGD,那么有FG/AG=DG/BG于是:AG/GE=FG

已知:如图,在四边形ABCD中,AD‖BC,BD垂直平分AC.求证:四边形ABCD是菱形.

AC交BD于O点,三角形ADO与三角形BOC相似,所以DO=BO,对角线互相垂直且平分的四边形是菱形

在四边形ABCD中,AC与BD相交于点O,AB//AD,AO//CO 求证:四边形ABCD是平行四边形

证明:∵AB‖CD,∴∠ABO=∠CDO.(1分)∵AO=CO,∠AOB=∠COD,∴△ABO≌△CDO.(3分)∴AB=CD,(4分)又∵AB‖CD∴四边形ABCD是平行四边形.(5分)

已知:在平行四边形ABCD中AC BD相交于O延长CD至E CE=DC连接AE交BC于点F连接BE求证四边形ABEC为平

【纠正:延长DC至E】证明:∵四边形ABCD是平行四边形∴AB=CD,AB//CD∵CE=DC∴AB=CE∵CE在DA延长线上∴AB//CE∴四边形ABEC是平行四边形【根据对边平行且相等】

在四边形ABCD中,AC⊥BD,OA=OC,OB=OD,求证:四边形ABCD是菱形.

∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;

在空间四边形ABCD中,连接AC,BD,三角形BCD的重心为G 化简:(1)AB+1/2BC-3/2DG-AD (2)A

(1)AB+1/2*BC-3/2*DG-AD=(AB-AD)+1/2*BC-3/2*DG=DB+1/2*BC-3/2*DG(根据重心的定义可得DG=1/3*(DB+DC))=DB+1/2*BC-3/2

已知,在四边形ABCD中,BD平分∠ABC,AB

在BC边上取一点E,使BE=AB,则三角形ABD全等三角形DBC,角DEC等于1/2角ABC+1/2角ADE,因为AD=DE=DC,则角DEC=角C.所以角ABC+角ADC=三角形DEC的内角和180

在四边形ABCD中,AB=DC,AC=BD,AD不等于BC,试说明四边形ABCD是等腰梯形

AC=BD,AB=CD,BC=BC,△ABC≌△DCB,〈ABC=〈DCB,同理,AB=CD,BD=AD,AD=AD,△ABD≌△ACD,〈DAB=〈ADC,〈ABC+〈BAD=〈DCB+〈ADC,〈

在四边形ABCD中,AC=6BD=8且AC⊥BD顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,依此类推,得

(1)判断四边形的形状四边形A1B1C1D1是(矩形)四边形A2B2C2D2是(菱形)四边形A2009B2009C2009D2009是(矩形)(2)四边形A1B1C1D1的面积(12)四边形A2B2C

有关中位线的.如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B

每次连接中点后得到的图形面积是原图形面积的一半,答案是S/2^n,S是原图形面积,也就是ab/2,最后应该是ab/2^(n+1)

如图,四边形ABCD中,AC=6,BD=8且AC⊥BD.顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1;再顺

(1)证明:∵点A1,D1分别是AB、AD的中点,∴A1D1是△ABD的中位线∴A1D1∥BD,A1D1=12BD,同理:B1C1∥BD,B1C1=12BD∴A1D1∥B1C1,A1D1=B1C1=1

在四边形ABCD中.AB平行CD.AC等于BD.讨论:四边形ABCD可能是什么形状的四边形?

平行四边形、菱形、正方形、长方形、等腰地形