在四边形ABCD 已知 它到四边形四个顶点的距离之和最小
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 18:05:51
以相邻两个小正方形的边长为直角边,做一个直角三角形,然后以这个直角三角形的斜边为边做一个正方形,这个正方形即为所求.
∠A:∠B=5:7∠B-∠A=∠C∠D-∠C=80∠A+∠B+∠C+∠D=360设∠A=5x,则∠B=7x,∠C=2x,∠D=80+2x5x+7x+2x+2x+80=360x=35/2所以∠A=5x=
如图,在三角形DCE中,有DE^2=CD^2+CE^2,因此,以DE为边的正方形DEMN即为所求的正方形.
连接BG两点以BG为边长画正方形即可.因为BC平方+CG平方=BG平方,
对角下交点即为所求的点O不妨另设一点P则PB+PD>BD,PA+PC>AC所以PA+PC+PB+PD>OA+OB+OC+OD所以对角线的交点O就是所求的点
正方形IBGH为两个正方形面积和
(1)连接AC,BD交于O,再顺次连接EFGH因为E,F是中点所以EF平行且等于二分之一AC(中纬线定理)同理GH等于二分之一AC所以EF平行且等于GH即EFGH是平行四边形(把汉字变成数学符号)(2
MD=CD-MC=24-6=18(cm)阴影面积等于梯形MDHG的面积,因为它们分别跟FEDM相加,都得到原来的梯形.阴影面积:(18+24)*8÷2=168(平方厘米)
设交点为Q则Q∈EH且Q∈FG因为EH包含于平面ABDFG包含于平面BCD所以Q∈平面ABD且Q∈平面BCD因为平面ABD∩平面BCD=BD根据公理:如果两个不重合的平面有一个公共点,那么它们有且只有
解题思路:中位线的应用解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.
证明:∵AB+CD≤AC+CD∴AB≤AC
对角线交点证明方法可在形内任取一点,由两边之和大于第三边即可得证.
延长CD到E,使DE=BC,连接AE∵四边形ABCD内接于圆∴∠ADE=∠ABC(圆内接四边形,外角等于内对角)又∵DE=BC,AD=AB∴△ADE≌△ABC(SAS)∴AE=AC=1∵∠ACD=60
四边行对角线的交点O
连BD,AC两条线的交点处就是O,其与四个顶点的距离之和最小.原因:两点之间的连线中,直线是最短的.
在BC边上取一点E,使BE=AB,则三角形ABD全等三角形DBC,角DEC等于1/2角ABC+1/2角ADE,因为AD=DE=DC,则角DEC=角C.所以角ABC+角ADC=三角形DEC的内角和180
对角下交点即为所求的点O不妨另设一点P则PB+PD>BD,PA+PC>AC所以PA+PC+PB+PD>OA+OB+OC+OD所以对角线的交点O就是所求的点
对角线的交点.由△三边关系得:①OA+OC>AC,②OB+OD>BD,∴①+②得:OA+OC+OB+OD>AC+BD,∴只有O点是对角线交点时,它到四个顶点的距离之和最短.
因为角1=角2,AC=BD,AB=BA,那么三角形ABC全等于三角形BAD,所以BC=AD=CD,角CBA=角DAB,又因为AC垂直BC,所以角ADB=角BCA=90度又因为角1=角2,所以角DAC=