在四棱锥P-ABCD中,侧面ACD⊥底面ABCD 底面ABCD为梯形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:37:36
PA垂直于平面AC.PA垂直于AB,三角形PAB是直角三角形PA垂直于AD,三角形PAD是直角三角形PA垂直于BC,AB垂直于BC,BC垂直于平面PABBC垂直于PB三角形PBC是直角三角形同理三角形
连接BD,则由已知条件可知△ABD是等边三角形,所以BG⊥AD,再由于两个面垂直,所以很容易证明BG⊥平面PAD再连接PA,由于△PAD是正三角形,G是中点,所以AD⊥PG,由于△ABD是正三角形,G
解析:∵在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD过P作PG⊥AD∴PG⊥底面ABCD∵PA=PD=(根号2/2)AD,E,F分别为PC,BD的中点∴PA=PD=
解析:根据题意我们可以知道PA⊥PD;而平面PAD⊥平面ABCDPA=PD所以点P在平面ABCD上的射影是AD的中点又因为AD⊥CD所以PA⊥DC既PA⊥面PCD如果取PD中点为F则四边形AMNF为平
第[1]题,请看上图.解题关键在于侧面PAD是正三角形,底面ABCD是菱形,所以AD=DC的,又因为角ADC是60度,所以三角形ADC也是正三角形.取AD中点O,连结PO、CO,根据中位线定理,PO垂
连结AC,则F是正方形ABCD对角线的交点,E、F分别为PC、BD的中点,则EF是△APC的中位线,EF‖AP,AP∈平面APC,∴EF‖平面APD.平面PAD与底面ABCD垂直,四边形ABNCD是正
①.∵PG⊥AD.BG⊥AD.(正三角形,三合一).∴∠PGB为垂直二面角的平面角.∴∠PGB=90°.∵BG⊥AD.BG⊥PG.∴BG⊥平面PAD.(同时,PG⊥平面ABCD,平面PGB⊥平面ABC
∵侧面PAD⊥底面ABCD..AD=侧面PAD∩底面ABCDAB⊥AD∴AB⊥PAD∴AB⊥PD∵PA=PD=2分之根2AD,∴⊿APD等腰直角.∠APD=90ºPD⊥PA∵PD⊥ABPD⊥
说什么糊话?第一行说:E.F分别是PC.AD的中点说明EF和AD相交AD在面PAD上所以EF与面PAD相交又怎么来的最后一行的“EF平行面PAD”?
证明,过P做PM垂直AD于M,因为平面PAD垂直底面ABCD且AD为交线,所以PM垂直平面ABCD,即PM垂直AB.又ABCD是正方形,AB垂直AD,所以AB同时垂直平面PAD内相交的两条直线PM和A
设G是P在AD上的垂足,则PG⊥ABCD(∵PAD⊥ABCD).∵GD⊥DC,∴PD⊥DC(三垂线),DC‖AB;∴PD⊥AB显然⊿APD等腰直角,(看三个边长)PD⊥PA.∴
抛砖引玉,作个提示:过P点作AD的垂线,则DM=CD=BC=(1/2)AD,且MD⊥CD,BC∥DM,所以:BCDM是正方形有:BD⊥CM,又不难证明:PM⊥BD,所以:BD⊥面PCM又:PM在面PC
符号很难打,所以截图.应该看的懂.
1,G为AD的中点PAD为正三角且垂直面ABCD可知道PG垂直ABCD即PG⊥GB底面ABCD是∠DAB=60°、边长为a的菱形所以BG⊥AD可知求证BG⊥平面PAD2证明AD⊥PGAD⊥GB那么AD
棱PC的中点就是F作△PAD底边AD的中线PG∵△PAD等边∴PG⊥AD 且AG=DG又面PAD⊥面ABCD∴PG⊥面ABCD连EG DE&nb
(1)PA⊥面ABCD,AC属于面ABCD,所以PA⊥AC 又AB⊥AC,因此AC⊥面PAB,PB属于面PAB,因此AC⊥PB(2)连接BD和AC,其交点为O,连接E
1、∵E是PC中点,F是AC的中点,∴EF是△PAC的中位线,∴EF//PA,∵PA∈平面PAD,∴EF//平面PAD,(直线平行于两面内的直线则必平行于该平面).2、取AD中点M,连结PM,PM是△
PA等于PD等于2分之根号2倍的ADPA²+PD²=AD²所以∠APD=90°AP⊥PD连接AC易证得F是AC的中点又E是PC中点可知PA∥EF所以EF∥平面PAD第二题
(1)若G为AD的中点,求证:BG⊥平面PAD(3)若E为BC的中点,能否在棱PC上找一点F,使平面DEF⊥平面ABCD?,并证明你的结论
解题思路:确定好各点的坐标。解题过程:最终答案:略