在半径为5的圆o中,ab为直径弦cd垂直于ab
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 16:59:44
证明:连接BD,设AE与OC交于F,DE与BC交于G则在三角形AFO和三角形DGB中角FAO=角GDB(都是弧EB对的圆周角)又因为角AOF=2*角ABC且同弦CD垂直于直径AB易知角ABC=角ABD
连接PB,PA=PBPA+PC=PB+BC≥BC(两点之间,线段最短)即P为BC和MN的交点时PA+PC的最小,最小值为BC的长度易求得OE=3,OF=4,EF=7,CF=3,BE=4因为AB平行于C
连接OB,设⊙O的半径是R,∴CD⊥AB,CD过O,∴AB=2AE=2BE,AE=BE=4,在Rt△OBE中,由勾股定理得:OB2=BE2+OE2,即R2=42+(R-6)2,R=133,答:⊙O的半
(1)∠AOC=π/3×R/R=π/3(2)∵∠AOC=π/3,OA=OC,∴△AOC是等边三角形,∠CAO=π/3由△AEC≌△DEO,得∠CAE=∠ODE∴AC//OD,∴∠DOB=∠CAO=π/
)∵AC^=π/3R,半圆的长是πR,∴弧AC是半圆是1/3,即弧的度数是60°,∴∠AOC=60°;
画图废+写字废【大大54就好.过程写在下面了.答案为26看不懂在问我哈~
连接CO,设半径CO=R.则OE=OA-AE=R-4.OE^2+CE^2=CO^2,即(R-4)^2+36=R^2,R=6.5
很高兴为您解答.可知:则AD=BD=(r根号3)/2直角三角形AOD中解得OD=r/2因此OD=DC=r/2所以四个直角三角形AOD,BOD,ADC,BDC全等所以四条边相等所以为菱形则面积=根三/2
作OD⊥AC,垂足为D,∵∠CAB=60°,点C在⊙O上.∴∠ACB=90°,∠B=30°∵AB=8,∠B=30°∴AC=4∵OD⊥AC,AC=4∴AD=2,OA=4在Rt⊿OAD中.OD=√(OA&
ΔOAC是等边三角形,O到AC距离就是等边三角形的高,∵OA=AC=5,∴O到AC的距离为:√3/2×5=5√3/2㎝.
OC=√4^2-2^2=2√3
6*2*3.14÷2=18.84cm这是小圆的周长的一半10*2*3.14÷2=31.4cm这是大圆的周长的一半(10-6)*2=8cm18.84+31.4+8=58.24
∵CD⊥AB∴EB=根号3在Rt△EOB中OE=根号3∴CE=3在Rt△CEB中CE=3,EB=根号3所以∠BCD=30°
连接BD,则角ADB=90度角ABD=角ADC=角D(同为BDC的余角)在Rt△ADB中,sinABD=AD/AB=2*5(1/2)/5cosABD=(1-cos^2ABD)^(1/2)cosABD=
根号5分之16利用三角形相似性连接EA,则三角形BDO和BAE相似则:BD/AB=OB/BEBD利用勾股玄定理求得是2倍根号5则BE==AB*OB/BD=32/2倍根号5==根号5分之16
∵OC=OB=10cm,OC⊥OB,∠BOC=90°,∴BC=OB2+OC2=102cm,∠OBC=45度.∴∠CBD=2∠OBC=90°,S扇形BCD=90π×(102cm)2360=50πcm2.
AE=OE=AO三角形AOE为正三角形,角AOE=60度,角COE=30度,角FOE=120度则AE,CE,EF分别是圆O的内接六边形,正十二边形,正三角形的一边
)这是相交弦定理,连AC,EB,因∠CAB=∠CEB,又有对顶角故三角形AMC∽EMB,所以AM*MB=EM*MC2)在直角三角形CDE中,CE=√(CD^2-DE^2)=√(64-15)=7EM=A
连接AE,cosD=DE/2R=15^0.5/8sin²D=1-cos²D=1-15/64=49/64sinD=7/8AO=EO,所以∠A=∠AEO因为∠EOB=∠