在半径为1的圆上,角aob=45度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:07:29
在半径为1的圆上,角aob=45度
已知圆O的半径为1CM,弦AB=根号2CM,求角AOB的度数.

三角形AOB是等腰三角形(OA=OB=1)又因为OA^2+OB^2=AB^2(1+1=2)所以角AOB=90°

扇形aob的圆心角角aob=120度,半径为根号3,求与此扇形面积相等的圆的半径

扇形半径R=√3,圆心角为120°,则扇形面积S=(1/2)πR²=π若所求圆的半径为x,则:πx²=πx=1则与扇形等面积的圆的半径是1

初三数学评价手册已知点P在角AOB的边OA上.读句画图1 做角AOB的平分线OM2 以P为顶点,做角APQ=角AOB P

PC一定是两倍的CE的.证明:过点C坐一条辅助线CF垂直于OA,垂足为F.∵OM为角平分线,∴∠AOM=∠BOM,又∵CF⊥OA,CE⊥OB,∴∠OCF=∠OCE.又∵OC=0C,∴三角形OCF≌三角

圆中有一三角形AOB 已知AB是圆的弦 半径oA=20厘米 角AOB=120度 求三角形AOB面积 圆中有弦AB 半径1

过点O做OC⊥AB,C是垂足当半径oA=20,∠AOB=120°时,∠A=30°,OC=½OA=10在直角△AOC中,根据勾股定理求出AC=10√3∴AB=2AC=20√3∴△AOB的面积=

已知圆心角为120度的扇形AOB半径为1,C为AB中点,点D、E分别在半径OA、OB上,若CD平方+CE平方+DE平方=

分析:1.画出图形,设OD=aOE=b,然后用余弦定理计算出CD^2+CE^2+DE^2的值,当然是a,b的式子,然后让它=5/2,把a看做常量,b看做未知数,就得到了关于b的一元二次方程,然后用判别

数学几何题.如图,在半径为5的园O中,点A、B在圆O上,∠AOB=90°,点是弧AB上的一个动点,AC与OB的延长线相交

您好!(1)过⊙O的圆心作OE⊥AC,垂足为E,∴AE=1/2AC=1/2x,OE=根号下(AO²-AE²)=根号下(25-1/4x²).∵∠DEO=∠AOB=90°,∴

角AOB=30°,点M在OB上,且OM=5cm,以M为圆心,r为半径画圆.(1).讨论射线OA与圆M的公共点个数,并写出

(1)M与OA相离无交点,相切1个交点,相交2个交点(2)按照勾股定理算,先画出夹角30,然后一点M在OB,上一点C在OA上,OM先画出,用M点向OC线段画一条垂线MF,算出垂线距离,半径比这个距离小

如图,已知⊙O是以数轴的原点为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若过点P且与OA平行(或重合)的直

∵⊙O是以数轴的原点为圆心,半径为1的圆,∠AOB=45°,∴过点P′且与OA平行的直线与⊙O相切时,假设切点为D,∴OD=DP′=1,OP′=2,∴0≤OP≤2,同理可得,当OP与x轴负半轴相交时,

圆与直线的关系如图所示,已知圆O是以数轴的原点O为圆心,半径为1的圆,角AOB=45度,点P在数轴上运动,若过点P且与O

这个……图呢……我自己画了一种情况——【-根号2,+根号2】就是B在x轴上……

扇形AOB中圆心角AOB=60度 半径为2 在弧AB上有一动点P,过P做平行于OB的直线河OA交与点C,设角AOP=a

设半径为r=2,P到OA的距离为h角ACP=角COP+角CPO=角COP+角POB=60所以h=rsinaOC=rcosa-h/tan60所以三角形POC的面积s=OCxh/2=rsina(rcosa

要在半径OA=100cm的圆形金属板上截取一块扇形板,使其护厂AB为112cm,求圆心角AOB为多少?

圆心角=弧长/半径:12/100=1.12,单位是弧度,换成度是64.17度.

一道初三几何已知半径为1的圆O交X轴正半轴于A点,B点在圆O上,∠AOB=120°,则点B坐标为?我画不出图来,请大家附

B1:(负二分之一,根号三)B2(负二分之一,负根号三)再问:圆O就是坐标原点吗?再答:是的,坐标原点用O表示再问:……,怪不得

在扇形OAB中,半径OA为4cm,点C是半径OB的中点,∠AOB=120,求阴影部分的面积.

连结AB∵∠AOB=120°,AO=BO∴容易求得S△AOB=4根号3∵点C是OB中点,∴S△AOC=S△ACB=1/2S△AOB=2根号3又S扇形OAB=8π∴阴影部分面积=S扇形OAB-S△AOC

..在扇形OAB中,半径OA为4cm,点C是半径OB的中点,∠AOB=120,求阴影部分的面积.

过点A作OB的垂线,交BO的延长线于点E∵∠AOB=120°∴∠AOD=60°∵OA=4∴OE=2,AE=2√3∴S△AOC=1/2*2*2√3=2√3∵S扇形OAB=1/3*π*4²=(1

已知如图,在三角形AOB=90度,OA=OB,OC是高,以圆O为圆心,OC为半径的圆交OA于D,点E在AB上,且BE=O

要想求证DE为圆O的切线即是求证DE⊥OA设圆的半径为a,则AO=BO=√2a,AB=2a,AD=(√2-1)a,AE=(2-√2)a看两组比值:AD/AO和AE/AB,把上述数值带入容易求证AD/A

如图,已知△AOB中,∠AOB=90°,OD⊥AB于点D.以点O为圆心,OD为半径的圆交OA于点E,在BA上截取BC=O

证明:连接CO,∵BC=OB,∴∠1=∠2,∵∠AOB=90°,∴∠2+∠4=90°,∵OD⊥AB,∴∠1+∠3=90°,∴∠3=∠4,在△CEO和△CDO中EO=DO∠3=∠4CO=CO,∴△CEO