在公差不为零的等差数列an满足a1=1且a2,a4,a8为等比数列bn的前三项
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 15:39:32
1.因为等差数列AN的公差d不等于0,a1=2,s9=36,所以36=9*2+1/2*9*8d所以d=1/2所以a3=3,a9=6,由a3,a9,am成等比数列则a9的平方=a3*am,的am=12又
数列a1a2a5等比数列则有a2*a2=a1*a5a3-2d=a1a3+2d=a5a3-d=a2带入得到d=2b1+2b2+4b3+2^(n-1)bn=an(1)b1+2b2+4b3+2(n-3)bn
(1)a3=a1+2d,a7=a1+6d,所以a1*a7=a3*a3,即a1*(a1+6d)=(a1+2d)*(a1+2d)解得d=1(2)Sn=(1/2)n^2+(3/2)n,又a3=a1+2d=4
a1+q^2*a1=2*q*a1解得q=1不存在满足条件的答案……你检查题目是不是有问题……
因为b1=a1²,b2=a2²;所以b1>0,q>0且q≠1({an}公差不为零)所以a1=√b1,a2=√(b1*q),a3=q*√b12a2=a1+a3->2√(b1*q)=√
令{an}公差为d,由b2^2=b1*b3得:a2^4=a1^2*a3^2两边开方得:a2^2=a1*a3或a2^2=-a1*a3当a2^2=a1*a3时,有: (a
(1)根据题意,设公差为d则a3=a1+2d=2d+1a9=a1+8d=8d+1有(2d+1)^2=8d+1d=1故通项:an=n(2)根据题意,设公比为q则b2=qb3=q^2有q-0.5q^2=0
(1)由题意,设公差为d,则a1+4d=10(a1+2d)2=a1(a1+8d)∴a1+4d=104d2=4a1d∵d≠0,∴a1=2,d=2∴an=2+(n-1)×2=2n;(2)由(1)知,Sn=
a9=a5+4da15=a5+10d(a5+4d)²=a5(a5+10d)8da5+16d²=10da516d²-2da5=02d(8d-a5)=0d=a5/8所以a9=
设公差为da2^2=a1a5(a3-d)^2=(a3-2d)(a3+2d)a3=5代入,整理得d^2-2d=0d(d-2)=0d=0(与已知矛盾,舍去)或d=2an=a1+(n-1)d=a3+(n-3
设公差为d(d≠0),由题意a32=a2•a6,即(a1+2d)2=(a1+d)(a1+5d),解得d=-2a1,故a1+a3+a5a2+a4+a6=3a1+6d3a1+9d=−9a1−15a1=35
【第(1)题】设{an}首项为a1,公差为d(d≠0);{bn}首项为b1,公比为q(q≠0,q≠1)则,an=a1+(n-1)d,bn=b1*q^(n-1)由题意,a1=b1=1则有1+d=1*q1
(1)由题意可得(a1+d)2+(a1+2d) 2=(a1+3d)2+(a1+4d)27a1+21d=7联立可得a1=-5,d=2∴an=-5+(n-1)×2=2n-7,sn=−5n+n(n
由题意,显然该等比数列的公比不会是负数,也不会是小于一的数.前者不会满足等差数列要求,后者末项趋于零,不合理.故公比大于一,故等差数列是递增的即公差大于0.又a5*a5=a3*an1即36=a3*an
设公差为d则有:a1=10-4da3=10-2da9=10+4d由a1、a3、a9成等比数列得:a3^2=a1a9即(10-2d)^2=(10-4d)(10+4d)解得:d=2或d=0(舍去)故:a1
设该等差数列是首项为a1,公差为dS3=3a1+3(3-1)*d/2=3a1+3dS2=2a1+2(2-1)*d/2=2a1+dS4=4a1+4(4-1)*d/2=4a1+6d又:S3²=9
设a2=b2=x则a5=4x-3b3=x^2所以4x-3=x^2解得x=1(舍去,因为公差不为0)或者3所以(1)an=2n-1bn=3^(n-1)(2)S(bn)=(3^n-1)/2(3)若成立则2
依题意可知ma1+m(m−1)d2=na1+n(n−1)d2,整理得a1+n+m−12d=0∴Sm+n=(m+n)a1+(n+m−1)(n+m)2d=(n+m)(a1+n+m−12d)=0故答案为:0
a2=a1+da3=a1+2da6=a1+5d由等比数列性质(a1+2d)^2=(a1+d)(a1+5d)a1=-1/2dq=a3/a2=3
a2,a3,a6组成等比数列的连续三项∴a3的平方=a2a6(a1+2d)²=(a1+d)(a1+5d)化简得d=-2a1q=a3/a2=(a1+2d)/(a1+d)=(-3a1)/(-a1