在三角形中2bccosC=2a
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 18:27:49
由正弦定理得b/sinB=a/sinA因为b=2a,B=A+60°,所以2a/sin(A+60°)=a/sinA2sinA=sin(A+60°)=sinAcos60°+cosAsin60°=1/2si
化为c/a=2cosB又c/a=sinC/sinA所以sinC=2sinAcosB因为A+B+C=180sinC=sin(A+B)=sinAcosB+sinBcosA于是sinAcosB=sinBco
在任意△ABC中,存在:a/sinA=b/sinB=c/sinC=2R,其中R是△ABC外接圆半径.所以a=2RsinA,b=2RsinB,c=2RsinC根据题意4RsinA=2RsinB+2Rsi
结论是S=a^2(cotB+cotC)/2吧设A点到BC的距离为h(即高),垂足为DBD=h*cotBCD=h*cotCa=BC=h(cotB+cotC)S=ah/2=a^2(cotB+cotC)/2
设三角形的顶点为A、B、C,对应的边长为a、b、c.过顶点B做AC边上的垂线,设垂线长度为h,则有h=asinC.SΔABC=h*b/2=absinC/2正弦定理a/sinA=b/sinB可得b=as
cos²(A/2)=(1+cosA)/2=sinBsinC1+cos(180-B-C)=2sinBsinC1-cos(B+C)=2sinBsinC1-(cosBcosC-sinBsinC)=
再答:余弦定理再答:希望采纳哦亲
B对应b,A对应a,B=(A+60),b=2a由正弦定理得b/sinB=a/sinA2a/sin(A+60)=a/sinA2sinA=sin(A+60)2sinA=sinAcos60+cosAsin6
S=1/2bcsinA=1/2acsinB因为b=2a,B=A+60°所以1/2*2acsinA=1/2acsin(A+60°)由此可得:tgA=√3/3,所以A=30°
tanA/tanB=[sinA/cosA]/[sinB/cosB]=a²/b²=sin²A/sin²B,即:sinAcosA=sinBcosB,2sinAcos
a=2bcosc根据余弦定理有a=2b*(a^2+b^2-c^2)/2ab=a^2+b^2-c^2/a则有a^2=a^2+b^2-c^2则有b=c此三角形的形状是等腰三角形
sinB=根号2cosC,则左边为sin(180°-(A+C))=sin(A+C)=sinAcosC+cosAsinC=右边的根号2cosC那么因为A=45°则sinA=根号2/2代入上式则有最后si
条件应该是tan「(A-B)/2」=(a-b)/(a+b)吧(a-b)/(a+b)=(1-b/a)/(1+b/a)=(1-sinB/sinA)/(1+sinB/sinA)=(sinA-sinB)/(s
公式:sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]a=2RsinA,b=2RsinB(a-b)/(a+b
cosB=(a*a+c*c-b*b)/2ac带入化简c*c-b*b=0c=b等腰三角形
等腰三角形或者直角三角形a^2*tanB=b^2*tanAa^2*sinB/cosB=b^2*sinA/cosA正弦定理得到asinB=bsinA代入得到acosA=bcosB等价于sinAcosA=
a²≤b²+c²-bcbc≤b²+c²-a²1/2≤(b²+c²-a²)/2bccosa≥1/2a≤60°
sin(A/2)=cos((A+B)/2),得sin(A/2)=cos(90度-(C/2))=sin(C/2)就有A/2=C/2或A/2=180度-C/2,故A=C(A+C=360度舍去),因此三角形
2sinAcosB=sin(A+B)+sin(A-B)=sinC+sin(A-B)=sinC所以sin(A-B)=0所以A=B所以,△ABC是等腰三角形.完毕.
正三角形再问:谢谢,具体的解答步骤是什么再答:这个...我是倒推的因为这样类似的问题答案肯定是特殊的三角形要么是直角要么是正三角形然后用正三角形带进去一试诶正好对了再试了几个正三角形不行所以就是正三角