在三角形中 ab分别是三角形的内角A B所对的边 若B等于45

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:29:59
在三角形中 ab分别是三角形的内角A B所对的边 若B等于45
在三角形ABC中,三边长分别是a,b,根号下a2+b2+ab 求三角形的最大角

设第三边c则c²=a²+b²+ab根据余弦定理,c²=a²+b²-2abcosC所以,2cosC=-1cosC=-0.5C=120°最大角是

在三角形ABC和三角形EDF中,D,E,F分别是三角形ABC的三边BC,CA,AB的中点,求三角形DEF相似三角形ABC

证明:D,E分别为BC,AC的中点,即DE为三角形ABC的中位线,则:DE/AB=1/2;同理可证:EF/BC=1/2;DF/AC=1/2.即DE/AB=EF/BC=DF/AC.故⊿DEF∽⊿ABC.

如图所示,在三角形ABC中,AE,CD分别是AB,BC的高,AB=8,BC=10

设面积为S,S=½×10×AE=½×8×CD,CD:AE=5:4若CD=8,则AE=32/5

在三角形ABC中,E,F分别是AB,AC的中点,用向量AB,向量AC表示向量EF

向量BC=AC-AB向量EF=1/2BC故EF=1/2(AC-AB)有空给个好评吧

如图,在三角形ABC中,D,E,F分别是AB,BC,AC,的中点,AE,DE,EF,将三角形ABC分成四个小三角形

三角形BDE和三角形CFE面积相等我就不解释了.三角形BDE和三角形ADE也是相等的,因为两三角形底相等,AD=BD,且高也相等,都是过E做AB的垂线就是高,根据面积公式就知道底高都相等面积一定相等了

在三角形ABC中,D,E分别是边AB,AC的中点,AB=6,BC=7,AC=8,那么三角形ADE周长是

D,E分别是边AB,AC的中点则AD=AB/2=3AE=AC/2=4DE为△ABC的中位线,DE=BC/2=7/2三角形ADE周长是AD+DE+AC=3+4+7/2=21/2希望我的回答对你有用,望及

如图,在三角形ABC中,已知BD,CE分别是边AC,AB上的高,求证:三角形ADE相似于三角形ACB

∵BD,CE分别是边AC,AB上的高,∴∠ADB=∠AEC=90º,又∠A=∠A,∴⊿ADB∽⊿AEC,∴AD/AE=AB/AC,在ADE和⊿ABC中AD/AE=AB/AC,∠A=∠A,∴A

已知,在四边形abcd中,ef分别是ab cd的中点,(1)求证三角形afd全等三角形ceb

【是平行四边形ABCD】证明:∵四边形ABCD是平行四边形∴AD=BC,AB=CD(平行四边形对边相等)∠B=∠D(平行四边形对角相等)∵E是AB的中点,F是CD的中点∴BE=DF∴△AFD≌△CEB

如图,在三角形ABC中,D、E分别是AB和AC边上的中点,如果三角形ABC的面积是8,求三角形ADE的面积.

用相似比来做,因为D\E是中点,所以DE是中位线,所以DE比BC就是1:2所以三角形ADE面积比三角形ABC面积就是相似比的平方1:4所以ADE面积是2

在三角形ABC中,D,E,F分别BC,CA,AB的中点,点M是三角形ABC的重心

如图:1.向量运算的平行四边形法则      2.重心的性质, 1:2可得答案 A

如图在三角形ABC中,BE,CF分别是AC,AB两边上的高.

证明△AGC和△ADB全等.(1)△CFA和△ABE有2个公共角(∠BAC和∠CAB,∠AFC和∠AEB),所以∠ABE=∠ACG.又因为BD=AC,CG=AB.△AGC和△ADB全等(SAS).所以

在三角形ABC中,AB是最长边,P是三角形内一点,证明PA+PB>PC

PA+PB>AB下证PC一定比AC和BC中至少一个小(反证法)假设PC>AC且PC>BC以C为圆心,PC的长为半径作圆,动点P的轨迹即圆弧都落在△ABC外,与题设中P是△ABC内一点矛盾故假设不成立∴

如图,在三角形ABC中,点D,E分别是AB,AC边上的点

∠B的同位角是∠ADE,同旁内角是∠ACB,∠B+∠BDE的度数是180度再问:同位角和同旁内角都只有一对吗还有后面一题的过程谢谢!!表示超急再答:恩,同旁内角因为是关于相连的3条线的,有两对,∠AD

如图,在三角形ABC中,D,E分别是AB,AC上的点

然后呢再问:且AD=31,DB=29,AE=了30,EC=32,找出角1角2角3角4中相等的角再答:等一下我算一哈再问:嗯,谢谢再答:角1234分别在哪里啊,再答:你截图给我看看初一的题目吧,再问:在

已知在三角形ABC中,点D,点F分别是AB,AC上的一点.

∵AD=3BD∴AB=AD+DB=3BD+BD=4BD又DE//BC从而∠ADE=∠ABC,∠AED=∠ACB∴三角形ADE∽三角形ABC(两个角对应相等的两个三角形相似)从而S△ADE:S△ABC=