在三角形oab中,o为坐标原点,点a在反比例函数y=3 x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:28:04
在三角形oab中,o为坐标原点,点a在反比例函数y=3 x
已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示

(1)在Rt△OAB中,已知∠BOA的度数和AB的长,可求出OA的值,即可得到点A的坐标;由于△OBC由△OAB折叠所得,那么∠BOA=∠BOC、且OA=OC,过C作x轴的垂线,在构建的直角三角形中,

在三角形OAB中,O为坐标原点,横、纵轴的单位长度相同,A,B的坐标分别为(8,6)和(16,0),点P沿OA边从点O开

k(AB)=-3/4OA=10,sin∠AOB=6/10=0.6,cos∠AOB=8/10=0.8OP=t,xP=0.6t,yP=0.8txQ=16-2tk(PQ)=0.8t/(2.6t-16)(1)

如图,在直角梯形OABC中,CB平行OA,∠OAB=90°,点O为坐标原点,点x轴的正半轴上

1、OB=4√2C(2,4)2、△OCM的面积=2/3*△OCB的面积=2/3*1/2*2*4=8/33、A(4,0)、C(2,4)、O(0,0)y=-x²+4x4、F(6,-12)或(-2

如图,在三角形OAB中,O为坐标原点,横纵轴的单位长度相同,A,B的坐标分别是(8,6)(16,0),点P沿OA边从点O

1、分别过点A、P作x轴的垂线,垂足分别为M、N,则:△OPQ的高h有如下关系:PN/OP=AM/OA=6/10=0.6∵OP=T∴PN=0.6*OP=0.6T又有:OQ=16-2T所以△OPQ的面积

已知正三角形OAB的三个顶点都在抛物线y^2=2x上,其中O为坐标原点,设圆C是三角形OAB的外接圆

1)设A(y²/2,y)B(y²/2,-y)根据OA=AB☞y=2√3,AB=4√3根据正弦定理2R=AB/sin∠AOB=8,R=4那么目标:(x-4)²+

已知正三角形OAB的三个顶点都在抛物线y^2=2x上,其中O为坐标原点,设圆C是三角形OAB的外接圆,求圆的方程

OA的斜率为tan30°=1/√3,方程为y=x/√3,代入抛物线方程y^2=2x,得x=0orx=6,回代y=2√3,A(6,2√3),圆心设为D(d,0),d=6-(2√3)tan30°=4;半径

已知正三角形OAB的三个顶点都在抛物线y^2=2x上,其中O为坐标原点,设圆C是三角形OAB的外接圆(点C为圆心)

OA的斜率为tan30°=1/√3方程为y=x/√3,代入抛物线方程y^2=2x,得x=0或x=6,将x代入得,y=2√3A(6,2√3),圆心设为D(d,0),d=6-(2√3)tan30°=4;半

在△OAB中,O为坐标原点,A(1,cosθ),B(sinθ,1),θ∈(0,π2],则当△OAB的面积达最大值时,则θ

如图单位圆O与x轴交于M,与y轴交于N,过M,N作y轴和x轴的平行线交于P,则S△OAB=S正方形OMPN-S△OMA-S△ONB-S△ABP=1-12(sinθ×1)-12(cosθ×1)-12(1

如图,在平面直角坐标系中,O为坐标原点,等腰△OAB的底边OB在X轴正半轴上 OA=AB∠OAB=120°

第一问AB所在的解析式为y=-√3/3X+2√3,B是在X轴上也就是Y=0所以-√3/3X+2√3=0解得X=6,所以B的坐标是(6,0)也就是0B=6∠OAB=120°根据等腰三角形的性质,∠AOB

如图,在平面直角坐标系中,O为坐标原点,Rt△OAB的直角边0A在x轴正半轴上,且OA=4,AB=2,将△OAB沿某条直

(1)∵△OAB≌△OCD,∴OC=OA=4,AB=CD=2,∴D(2,4),∵直线AD过A(4,0)和D(2,4),∴设直线AD的解析式是y=kx+b,代入得:0=4k+b4=2k+b,解得:k=-

在三角形ABC中,O为坐标原点,A(1,cosX),B(sinX,1),X属于小于等于90度大于0度,则当三角形OAB的

画个图:y轴、x轴、y=1、x=1,A点在x=1线上移动,B点在y=1的线上移动S(OAB)=1*1-1/2*1*sina-1/2*1*cosa-1/2*(1-cosa)(1-sina)=1-1/2(

在平面直角坐标系中 Rt三角形OAB的顶点A的坐标为(根号3,1)B的坐标是(根号3,0)O为坐标原点,若将三角形OAB

x=√3cos60=√3/2,y=√3sin60=2所以为B1(√3/2,2)再问:在平面直角坐标系中,O为坐标原点,点A的坐标为(0,根号3)点B的坐标为(1,0)将三角形AOB沿直线AB折叠,点O

如图1,在平面直角坐标系中,O为坐标原点,边长为5的正三角形OAB的OA边在X轴的正半轴上.

如下图所示;1;做BF垂直于OA,由几何知识知道,BF垂直平分OA,即OF=FA=OA/2=OB/2=OC/2.当0<t<5∕2时,即C,D分别在OF,OB上变化时,有;∵∠A=∠A,OC/OD=1t

如图在平面直角坐标系中o为坐标原点,直角三角形OAB的两条直角边在坐标轴上,角ABO=30度,OA=2.现将三角形OAB

(1)如图1,当P点恰好落在X轴的正半轴上时,旋转角θ的度数是30°.           

如图,Rt△OAB中,∠OAB=90°,O为坐标原点,边OA在x轴上,OA=AB=1个单位长度,把Rt△OAB沿x轴正方

(1)由题意可知,A(1,0),A1(2,0),B1(2,1),设以A为顶点的抛物线的解析式为y=a(x-1)2;∵此抛物线过点B1(2,1),∴1=a(2-1)2,∴a=1,∴抛物线的解析式为y=(

在等腰直角三角形OAB中,O为坐标原点,B为直角顶点,若A点坐标是(-4,2),求点B和向量A

设B(x,y)OB=(x,y)AB=(x+4,y-2)由于ΔOAB为等腰直角三角形,故AB⊥OB,AB=OB即AB*OB=0,AB=OB所以,x*(x+4)+y*(y-2)=0x*x+y*y=(x+4

已知三角形OAB的三个顶点都在抛物线y²=2x上,其中o为坐标原点,设圆c是△OAB的外接圆求圆的方程

∵kOA=tan30°=1/√3∴y=x/√3,代入抛物线方程y^2=2x,得x=0(舍去)x=6,∴y=2√3A(6,2√3),令圆心:D(d,0),d=6-(2√3)tan30°=4;令半径,r^