在三角形MPQ中,H是高MQ与NR的交点,且MQ=NQ,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:50:16
在三角形MPQ中,H是高MQ与NR的交点,且MQ=NQ,
如图在△MNP中,H是高MQ和高NR的交点,且MQ=NQ,试判断HQ与PQ的数量关系,并证明你的结论

会有HQ=PQ证明:△MRH和△NQH当中∠MHR=∠NHQ(对顶角)∠MRH=∠NGH(都是直角)于是可得∠HNG=∠HMR又有MQ=NQ∠MQP=∠NQH=90°于是△MQP≌△NQH所以HQ=P

如图,在△MNP中,H是高MQ与NE的交点,且QN=QM,猜想PM与HN有什么关系?试说明理由.

三角形NEP与三角形MQP相似(都是直角三角形,且有一个公共角)所以角HNQ=角PMQ都是直角三角形且QN=QM所以三角形MQP与三角形NQH全等所以PM与HN相等

如图,已知在△MNP中,∠MNP=45°,H是高MQ和高NR的交点,试说明:HN=PM

证明:因为H是高MQ和NR的交点所以角MQN=角MQP=角HQN=90度角NRP=90度因为角MQN+角MNP+角NMQ=180度角MNP=45度所以角NMQ=45度所以角NMQ=角MNP=45度所以

如图所示,在三角形MNP中H是高MQ与NE的交点,且QN=QM,猜想PM与HN有什么关系?试说明理由.

等下再答:看得不清楚再答:做出来了再答:拍照再答:再答:好了再答:懂吗?再答:再答:对不起。不小心点锴了再答:刚才图片不相关再答:给个评价好不?再问:证明三角形MPQ和三角形HQN全等不行吗?再问:哦

12.(8分)如图9所示,在△MNP中,H是高MQ与NE的交点,且QN=QM,猜想PM与HN有什么关系?试说明理由.

猜想HN=MP证明∵MQ⊥NP,NE⊥MP,∴∠NHQ=∠P∵NQ=MQ∴△NPH≌△MQP∴HN=MP

如图所示,在三角形mnp中,H是高MQ与NE的交点,且QN=QM,猜想PM与HN的大小有什么关系,请说明理由

首先根据等角的余角相等,得出∠EMH=∠QNH,再利用ASA定理证明△MPQ≌△NHQ,从而得出MP=NH.证明:PM=HN.理由:∵在△MNP中,H是高MQ与NE的交点,∴∠MEH=∠NQH=90°

如图所示,在△MNP中,H是高MQ与NE的交点,且QN=QM.求证:△PQM全等△HQN

∵∠MEH=∠NQH=90°(垂直的定义),∠MHE=∠NHQ(对顶角相等),∴∠EMH=∠QNH(等角的余角相等)MQ=NQ(已知)∠MQP=∠NQH=90°(已知)∴△MPQ≌△NHQ

如图所示,在△MNP中,H是高MQ与NE的交点,且MQ=NQ,求证:HN=PM

证明:因:MQ=NQ∠HNQ=90-∠P=∠PMQ∠HQN=∠MQP=90度故:△HQN全等于PQM故:MP=HN

如图所示,在△MNP中,H是高并且是MQ与NE的交点,且QN=QM 求证△PQM全等于△HQN

∵∠MEH=∠NQH=90°(垂直的定义),∠MHE=∠NHQ(对顶角相等),∴∠EMH=∠QNH(等角的余角相等)MQ=NQ(已知)∠MQP=∠NQH=90°(已知)∴△MPQ≌△NHQ

已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ.求证:HN=PM.

这个不用网搜的.如果回答对了请不要关闭问题哟,我们打字也是很辛苦的(今天居然有人关掉了,太鄙视他了.有不懂的可以再问)其实就是证全等三角形的;因为MQ=NQ且MQ为高所以∠MQN为90°,∠QMN=4

如图,在△MNP中,∠MNP=45°,H是高MQ和高NR的交点,求证:HN=PM.

如图1∵MQ⊥PN,∠MNP=45°,∴∠QMN=45°=∠QNM,∴QM=QN,∵NR⊥PM,∴∠1+∠4=90°,又∵∠2+∠3=90°,∠3=∠4,∴∠1=∠2,在△HQN和△PQM中,∠1=∠

已知:如图,在三角形MPN中,H是高MQ和NR的交点,且MQ=NQ.求证:HN=PM

证明:∵MQ⊥PN,NR⊥MP∴∠MQN=∠MQP=∠NRP=90∴∠PMQ+∠P=90,∠PNR+∠P=90∴∠PMQ=∠PNR∵MQ=NQ∴△MPQ≌△NHQ(ASA)∴HN=PM再问:可是题目没

在三角形ABC中,角ACB等于90度,M是AB的的中点,P,Q分别BC,AC上的点,试比较线段AB与三角形MPQ周长的大

很明显线段AB大于三角形MPQ周长连MC因为MC为直角三角形ABC中线,所以AM=MB=BC在等腰直角三角MCB中,MC=MB,所以MC和MB是三角形MCB中最长的线段所以MC>MP同理AM>MQ所以

如图所示,在△MNP中,H是高MQ与NE的交点,且QN=QM,猜想PM与HN有什么关系?试说明理由.

证明:PM=HN.理由:∵在△MNP中,H是高MQ与NE的交点,∴∠MEH=∠NQH=90°,∠MQP=∠NQH=90°∵∠MHE=∠NHQ(对顶角相等),∴∠EMH=∠QNH(等角的余角相等)在△M

在Rt三角形ABC中,M是斜边BC的中点,P、Q分别是AB、AC边上的点,求证:三角形MPQ的周长大于BC

延长BA到B',使得AB=AB'延长CA到C',使得AC=AC'连接B'C,B'C'.在B'C'上取中点M',在AB'上取P'使得AP=AP'连接AM',M'P',P'Q可以知道PQ=P'Q,PM=P

如图在三角形mpn中h是高mq和nr的交点且mq=nq.求证:hn=pm

证明:∵MQ⊥PN,NR⊥MP∴∠MQN=∠MQP=∠NPR=90∴∠PMQ+∠P=90,∠PNR+∠P=90∴∠PMQ=∠PNR∵MQ=NQ∴△MPQ≌△NHQ(ASA)∴HN=PM再问:谢了!有一

已知:如图,在三角形MPN中,H是高MQ和NR的交点,旦MQ=NQ,求证:HN=PM

证明:∵MQ⊥NP,NR⊥MP∴∠PNR+∠P=∠PMQ+∠P=90°∴∠HNQ=∠PMQ∵∠NQH=∠MQP=90°,MQ=NQ∴△NHQ≌△MQP∴HN=PM

在三角形MPN中,H是高MQ和NR的交点,且MQ=NQ,求证:HN=PM

证明:∵MQ⊥NP,NR⊥MP∴∠PNR+∠P=∠PMQ+∠P=90°∴∠HNQ=∠PMQ∵∠NQH=∠MQP=90°,MQ=NQ∴△NHQ≌△MQP∴HN=PM

在Rt三角形ABC中,M是斜边BC的中点,P、Q分别是AB、AC,边上的点,求证:三角形MPQ的周长大于BC

提示一下:取PQ中点NAM、AN、MN.先证明MP+MQ>2MN有PQ=AN+AN还有MN+AN≥AM.