在三角形abc的外接圆圆o中,三角形abc的外角平分线cd
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:02:40
证明:作OD⊥AB于D,OE⊥CB于E,OF⊥AC于F.∵∠OBC=∠OBD∠OCB=∠OCF∴OD=OEOE=OF∴OD=OE∴点o在角a的平分线上
利用外接圆半径公式a/sinA=b/sinB=c/sinC=2r(r为此三角形外接圆半径),得sin角ACB=AD/AC=5/6c/sin角ACB=2rc=AB=7则r=24/5=4,8
将△ABC分成三个三角形:△AOB,△AOC,△BOC.设O到三角形三边的距离都是h三角形的面积=三个三角形的面积=AB*h*1/2+AC*h*1/2+CB*h*1/2=三角形周长*h*1/2=54*
OED周长=10因为OE=BEOF=FC又因为BE+EF+FC=BC=10所以OE+EF+FC=BC=10(这道题是利用角平分线使被平分的两个角相等然后平行使角ABO与另一个角BOE相等又因为角ABO
画了图,但是上传不上.你看着图,因为AD平分角BAC,又是外接圆,所以∠BAD和∠BCH所对的是同一段弧.所以有∠BAD=∠CAD=∠BCH所以易证△AHC∽△CHD,所以CH²=DH×AH
三角形ABC面积可看作三个小三角形的面积之和S=1/2*AB*h+1/2*AB*h+1/2*BC*h=1/2(AB+AC+BC)*h=1/2*20*2=20cm²
答:依据题意,这个点O就是三角形ABC的内切圆圆心,R=2cm;连接AO、BO、CO,三角形ABC面积:S=S三角形ABO+S三角形BCO+S三角形ACO=AB*R/2+BC*R/2+AC*R/2=(
~你好!很高兴为你解答,~如果你认可我的回答,请及时点击【采纳为满意回答】按钮~~手机提问者在客户端右上角评价点“满意”即可.~~你的采纳是我前进的动力~~祝你学习进步!有不明白的可以追问!谢谢!~
1.延长AO到HAH直径弧AC+弧HC=弧AH对90度角所以OAC+ABC=90ABC+BAE=90得角BAE=角CAO2.BOC=2BAC=120OBG,OCG等边三角形OA=OGAD//OG只需证
外心即三角形各边垂直平分线的交点设od垂直bc于d所以cd=1/2bc=12厘米od、oc和cd根据勾股定理od²+cd²=oc²oc²=6²+12&
CD=6,BD=8,则BC=10.CD=6,AD=3,则AC=根号45三角形CBE相似于三角形CDA,所以CB/CD=CE/CA即:10/6=CE/根号45CE=5*根号5,圆的半径为5/2*根号5
证明:(1)在Rt△ABC中,∠BAC=90°,∠C=30°,D为BC的中点,∴∠ABD=60°,AD=BD=DC.∴△ABD为等边三角形.∴O点为△ABD的中心(内心,外心,垂心三心合-).连接OA
延长DE交圆O于F,连接CF,ADDF//AC=>∠ACF=180°-∠DFC而CD为直径,∴∠DFC=90°,∴∠ACF=90°∴ACFD为矩形,A,O,F三点共线连接AOF,交BC与N,则AN⊥B
1,两个三角形相似要证明ED与CB平行要证明角CBE=BEDABC与BED都为等边三角形CBE=180-ABC-EBD=60=BED2连接OBOBC=30CBE=60OBE=OBC+CBE=90OB与
点I是△ABC的内心,所以AE平分∠BAC,∠BAE=∠CAE,那么弧BE=弧CE,∠BAD=∠ECD,又∠BDA=∠EDC△ABD与△CED相似,AB/CE=AD/CD=2,AD=6,所以CD=3
过B作BM⊥AC可得AM=3BM=3√3在△BCM中用勾股定理BC=2√13内切圆圆I的半径为r1/2r(AB+BC+AC)=1/2×8×3√3r=(7√3-√39)/3外接圆圆O的半径过O点作AB,
三角形外接圆圆心是三边的垂直平分线交点,所以作其任意两边垂直平分线,这两条垂直平分线交点O,再以点O为圆心,OA为半径作圆,即可得到外接圆.第二问直接用正弦定理即可求解,这应该是初三的题目,我就用初三
到三个顶点的距离相等的,就是内接三角形,你可以将三个顶点到对边中点的连线相交,就是这个外接圆的圆心.
∵BD=AB/2,AB=2OB,∴BD=OB,∵AB是直径,∴〈ACB=90°,(半圆上圆周角是直角)∵〈A=30°,∴〈ABC=60°,∵OB=OC=R,∴△OBC是正△,∴BC=OB=OC,∴BC