在三角形ABC内任意一点P[a,b]经过平移后的对应点P1[c,d]

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:46:48
在三角形ABC内任意一点P[a,b]经过平移后的对应点P1[c,d]
如图所示,点P是三角形ABC内的任意一点,求证:AB+AC>BP+PC

过P作PM∥AC交AB于M,过P作PN∥AB交AC于N,有AM=PN,AN=PM.△PBM中,PM+BM>PB(1)△PCN中,PN+CN>PC(2)(1)+(2)得:PM+BM+PN+CN>PB+P

已知p是三角形abc内任意一点,试说明pa+pb小于ac+bc

如图所示,延长AP交BC于点E.根据三角形两边之和大于第三边有:     AC+CD>AP+PD    

点P是三角形ABC内任意一点,试说明PB+PC

PB再问:有没有更详细的再答:这个没法详细证明,只要点P是在三角形内的任意一点,它始终是比三角形的两条边短啊再答:相反的,如果点P是在三角形外的任意一点,就比那两条边长再问:那这么说这是公式了再问:太

已知p为三角形abc内任意一点.求证:1/2(ab+bc+ca)

已知P为三角形ABC内任意一点.求证:1/2(AB+BC+CA)CA,PA+PB>AB,三式相加得:2(PA+PB+PC)>AB+BC+CAPA+PB+PC>(AB+BC+CA)/2.因为AB+AC>

P为三角形ABC内任意一点,试说明AB+AC大于PB=PC

延长BP交AC于点E.在三角形ABE中AB+AE>BE=BP+PE在三角形PEC中PE+EC>PC相加得AB+(AE+EC)+PE>BP+PE+PCAB+AC>BP+CP同理可得BC+AB>AP+CP

如图,设P为三角形ABC内任意一点,求证:1/2

因为PA+PB>AB,PB+PC>BC,PA+PC>AC,三式相加得2(PA+PB+PC)>AB+BC+CA,所以PA+PB+PC>1/2(AB+BC+CA)

在三角形ABC中,AC=BC>AB,点P为三角形ABC所在平面内一点,且点P与三角形ABC的任意两个顶点构成三角形PAB

(2008•大庆)如图,在△ABC中,AC=BC>AB,点P为△ABC所在平面内一点,且点P与△ABC的任意两个顶点构成△PAB,△PBC,△PAC均是等腰三角形,则满足上述条件的所有点P

已知p为三角形abc内任意一点.求证在:1/2(AB+BC+CA)

利用‘三角形的两边之和大于第三边’可得:PA+PB>ABPB+PC>BCPC+PA>CA将三式相加,得2(PA+PB+PC)>AB+BC+CAPB+PB+PC>(AB+BC+CA)/2延长BP于AC交

已知p为三角形abc内任意一点.求证在:2/1(AB+BC+CA)

证明:延长BP与AC边相交于点D,由三角形两边之和大于第三边得AB+AD>BD,PD+DC>PC,故AB+AD+PD+DC>BD+PC=PB+PD+PC,AB+AD+DC>PB+PC,即AB+AC>P

已知 P 是三角形ABC内任意一点 求证AB+BC+CA大于PA+PB+PC

先证AB+BC大于AP+PC这个只要延长AP交BC于D然后AB+BD大于AP+PDPD+DC大于PC这两个相加,AB+BD+DC大于AP+PC也就是AB+BC大于AP+PC然后把ABC换两次,就得到了

如图,已知P是三角形ABC内任意一点,求证:角BPC>角A

证明:∠BPC=180°-(∠PBC+∠PCB);∠A=180°-(∠ABC+∠ACB);∵∠PBC+∠PCB180°-(∠ABC+∠ACB);即∠BPC>∠A.

已知:P是三角形ABC内任意一点,求证AB+AC>BP+PC

过P作PM∥AC交AB于M,过P作PN∥AB交AC于N,有AM=PN,AN=PM.△PBM中,PM+BM>PB(1)△PCN中,PN+CN>PC(2)(1)+(2)得:PM+BM+PN+CN>PB+P

如图,在△ABC中,P是△ABC内任意一点,证明∠BPC>∠A

延长BP与AC交于D点,∠BPC是△PDC外角所以∠BPC>∠BDC而∠BDC是△ABP的外角,所以∠BDC>∠A故∠BPC>∠A.

三角形ABC内任意一点P证明PA+PB+PC

错题一个,除非B是最小角,否则不一定成立.

如图所示,三角形ABC内任意一点P(a,b)经平移后对应点P1(a-2,b+3),将三角形ABC作

B1(-3,2),A1(-1,4),C1(2,1)再问:有过程吗再答:将原点横坐标-2,纵坐标+3

在三角形ABC中,AC=BC>AB,点P为 三角形ABC所在平面内一点,且点P与三角形ABC 的任意两个顶点构成三角形P

6个我们老师讲过了再问:能不能给个过程啊?再答:分别作出三角形的三边的垂直平分线,三线交于同一点,这点就满足条件;A为圆心AB为半径画圆.以C为圆心CA为半径画圆.在AC左侧得一点.同理BC右侧一点.

p为三角形ABC内任意一点,求证:PA+PB

延长AP,交BC于M,AC+MC>AM=AP+PM,BM+MP>PBAC+MC+BM+MP>AP+BP+PMPA+PB

在三角形ABC中P为三角形ABC内任意一点PD⊥BC于DPE⊥AC于EPF⊥AC于FAM⊥BC于M

题目缺少了一个条件-----------------------"P为等边三角形ABC内任意一点"AM,PD,PE,PF之间的关系为PD+PE+PF=AM.证明:连接PA,PB,PC.设AB=BC=C