在三角形abc中角b等于角c如图一点d点e分别在bc与ac上

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 07:56:44
在三角形abc中角b等于角c如图一点d点e分别在bc与ac上
如图 在rt三角形abc中 角acb等于90度 a=5 c=13 求b

∵是直角三角形∴a²+b²=c²;∴b=√(c²-a²)=√(169-25)=12;∴AC×BC=AB×CD;CD=a×b÷c=12×5÷13=60/

在三角形ABC中,角A减角B等于角C,求三角形的形状.

由题意可得:角A-角B=角C角A=角B+角C1*(移项)角A+角B+角C=180度2*(三角形内角和为180度)由1*带入2*得:2角A=180度角A=90度三角形ABC为直角三角形

如图 在三角形abc中 ab等于ac,角b=角c,求证三角形ABE全等于三角形ACD

点D、E分别在AB、AC上,AD=AE,∠B(ABC)=∠C(ACB),求证:三角形ABE全等于三角形ACD证明;∵∠B(ABC)=∠C(ACB)∴AB=AC又∵AD=AE∴DB=EC∵BC=BC∴&

如图在三角形abc中角abc等于角c等于角1角A等于角三求角的度数

求图再问:再答:角a等于角3,角三在?再答:把完整题目发来就好了再问:再答:再问:谢谢你再答:采纳为满意答案吧

如图在三角形abc中,角b等于九十度,角a等于三十度,ac等于四十米,将三角形abc绕顶点c顺时针方向旋转至三角形a撇b

∵∠B=90°∠A=30°∴∠ACB=60°∴∠A′CB′=∠ACB=60°∵∠ACB′=180°∴∠ACA′=120°∴A经过的路线长:120/360×2π×AC=1/3×2π×40=80π/3米

在三角形ABC中,角A减角B等于35度,角C等于55度,则角B等于多少度?如题

∵∠B=∠C(已知)∴AB=AC(等角对等边)得△ABC为等腰三角形又∵∠BAD=40°(已知)∴∠CAD=40°,∠ADB=90°...∠ADB=∠DAC+∠C(三角形一外角等于不相临的内角和)又∵

题:如图,在三角形ABC中,角ABC=2角C,B

∠CBD+∠C=∠ADB∠CBD=2∠C=2∠CBD又因为∠A=∠A所以▲ADB≌▲ABC所以AD:AB=AB:CD=BD:BC

如图,在RT三角形ABC中,角C等于90度,AB,BC,CA的长分别为c,a,b,求三角形ABC的内切圆半径

回答:设圆O与AB切于点D,与BC切于点E,与AC且于点F则AD=AF,CF=CE,BD=BE且AD+BD=cAF+CF=bCE+BE=a可得r=CE=CF=(a+b-c)/2再问:你给个图我再问:不

如图 在rt三角形abc中,角c等于45° 如图,在rt三角形abc中,角c等于45°,角cab的平

如图,在Rt三角形abc中,角c等于90度,角cab,角abc的角平分线ad,bd交与点o,求角adb的度数∵∠C=90°,∴∠BAC+∠ABC=90°,∵AD、BD分别平分∠BAC和∠ABC,∴∠B

如图,在三角形ABC中,角b等于角c

证明:过A作AD垂直BC于D,在三角形ABD与三角形ACD中,角B=角C,角ADB=角ADC=90度,AD=AD,所以三角形ABD全等于三角形ACD所以AB=AC

在三角形Abc中,已知b等于根号2,c等于1,b等于45度,求c角.

∵b=√2,c=1∴∠B>∠C,而∠B=45°∴∠C<45°.故△BAC是钝角三角形.作AD⊥BC于D,则△ADB是等腰RT△,AD=(√2)/2∴∠C=30

如图,在三角形abc中,角b等于76度,角c等于36度,

利用三角形的内角和可以求出:∠BAC=180°-∠B-∠C=180°-76°-36°=68°希望我的回答能帮助你,在我回答的右上角点击【采纳答案】,

在三角形ABC中角c等于90度若a等于5b等于12则c等于多少

a=5b=12a=12,b=12/5c��=a��+b��=12��+(12/5)��=12��(1+1/25)=12��x26/25c=12√26/5=24√6/5

如图在三角形abc中角b等于60度角c等于30度……

十五度再问:过程(^ω^)再答:一个三十度一个六十度所以另一个是直角,又因为角平分线线,所以,直角被分成两个四十五度,对吧再答:因为ad是高再答:所以bad就等于180减90减60等于30再答:所以d

在三角形ABC中,角C等于60度,a/(b+c) +b/(a+C)

c^2=a62+b^2-2abcosC=a^2+b^2-aba/(b+c)+b/(a+c)=(a^2+ac+b^2+bc)/((a+c)(b+c))=(ac+bc+ab+c^2)/((a+c)(b+c

如图,在三角形ABC中,角B等于两个角C,AD是高.求证:CD=AB+BD

证明:在DC取点E,使得BD=DE,连接AE∵AD⊥BC,BD=DE∴AB=AE∴∠B=∠AEB∵∠AEB=∠C+∠EAC,∠B=2∠C∴∠EAC=∠C∴AE=EC∴AB+BD=EC+DE=CD∴AB