在三角形ABC中角BAC为90度,AB等于AC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:28:23
如图,⊿EAB≌⊿EGB(AAS) EG=EA AB=GB ∴⊿FAB≌⊿FGB(SAS).GF=FA∠CAD=90&am
在BC上任选一点P(随便)过P作AB的垂线PE,(E为垂足,在AB上)过P作AC的垂线PF,(F为垂足,在AC上)因为AB=AC,角BAC=90度,所以角B=角C=45度因为PE垂直于AB,所以角BE
证明:如图:连接AD则AD是等腰直角△BAC的斜边BC的中线,∴AD=BD【直角三角形斜边中线=斜边一半】由等腰三角形的三线合一性质可得AD⊥BC、AD平分∠BAC∴∠B=∠DAF=45°在△ADF和
等腰直角三角形AN=BM,AD=BD,NAD=MBD=45所以NAD全等MBDDN=DMNDM=NDA+ADM=ADM+MDB=90
过D作DH‖BC交AB于H,设BC=1,∴AB=2,AC=AD=√3,由∠BAC+∠BAE=90°,∴DH‖AE.(1)由DH⊥AC,∴BH=AH=1由AH=1,AD=√3,∠BAD=90°,∴DH=
等腰三角形因∠B+∠C=90又因∠B+∠BAD=90∠C+∠CAD=90所以有∠BAD=∠C∠CAD=∠B且BE平分∠ABC所以∠ABE=∠CBE=1/2∠B又因∠BFD=∠AFE=∠BAD+∠ABE
解题思路:一般利用正弦定理证明解题过程:证明什么呢?谢谢!最终答案:略
/等等再答:
BD/sin角BAD=AB/sin角ADBCD/sin角CAD=AC/sin角ADCsin角ADC=sin角ADB角BAD=角CAD所以AB/AC=BD/DC
正确,理由简要如下:作FD⊥AB于D,设BC=1,则AB=2,AC=√3,∵△ABF是等边三角形,∴AD=1,FD=√3,又∵AE=AC=√3,∴FD=EA,又∵∠FDA=∠EAB=90°,∠FND=
题目有误,别白费劲了.再问:打错了,是求角BAE全等于角BFE
解题思路:数量关系为:BE=EC,位置关系是:BE⊥EC;利用直角三角形斜边上的中线等于斜边的一半,以及等腰直角三角形的性质,即可证得:△EAB≌△EDC即可证明.解题过程:附件
过点A作AM⊥BE于M,AN⊥CD于N∵∠BAD=60,AB=AD∴等边△ABD∴∠ABD=∠ADB=60∵∠BAE=∠BAC+∠CAE,∠DAC=∠BAC+∠BAD,∠BAD=∠CAE∴∠BAE=∠
过D作DE⊥AC于E,∵∠BAC=90°,∴DE∥AB,∴∠BAD=∠ADE,∵AD平分BAC,∴∠BAD=∠CAD,∴∠DAC=∠ADE,∴AE=DE,∵CE/AC=DE/AB,∴(4-DE)/4=
由正弦定理得:BC/sinBAC=2R=6/根号3所以R=3/根号3=根号3.再问:���Ҷ�����ɶ再答:���߶�BD���ҡ�BAD��90º��BDΪ���Բ��O��ֱ��2R�
(1)相等,因为直角三角形斜边中线等于斜边一半,故AD=1/2BC=CD=DB(2)等腰Rt△DMN连接AD,∵AN=BM,角NAD=角DBM=45°,AD=BD∴△NAD全等于△MBD(SAS)∴D
取AB中点D,连结DN,又∵∠ANB=90°,∴ND=1/2AB=AD,∴∠DAN=∠DNA,又∵∠DAN=∠CAN,∴∠DNA=∠CAN,∴DN∥AC,∴DN经过点M,即MN∥AC
解题思路:(1)∵AD⊥BC∴∠DAC+∠C=90度∵∠BAC=90°∴∠BAF=∠C∵OE⊥OB∴∠BOA+∠COE=90°∵∠BOA+∠ABF=90°∴∠ABF=∠COE∴△ABF∽△COE。(2
S三角形BAD+S三角形ADC=S三角形BAC1/2*AB*AD*sin(120/2)+1/2*AD*AC*sin(120/2)=1/2*AB*AC*sin1201/2*5*AD*√3/2+1/2*A