在三角形abc中若coda=-5分之3,cosb等于25分之24

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:55:40
在三角形abc中若coda=-5分之3,cosb等于25分之24
在三角形ABC中,若sinA+sinB=sinC(cosA+cosB).判断三角形ABC的形状;

由(sinA+sinB)/sinC=(a+b)/c=cosA+cosB=(b^2+c^2-a^2)/2bc+(a^2+c^2-b^2)/2ac得:a^3+b^3+a^2b+ab^2-ac^2-bc^2

在三角形ABC中,若sinA/a=cosB/b=cosC/c,则三角形ABC为什么三角形

sinA/a=cosB/b=cosC/c同乘以abc:bcsinA=accosB=abcosC因为三角形ABC面积S=1/2*bcsinA=1/2*acsinB=1/2*absinC所以cosB=si

在三角形ABC中,若|向量BA+向量BC|=|向量AC|,则三角形ABC一定是什么三角形

/>|向量BA+向量BC|=|向量AC|∴|向量BA+向量BC|=|向量AB+向量BC|∴|向量BC-向量AB|=|向量BC+向量AB|∴|向量BC-向量AB|²=|向量BC+向量AB|&#

在三角形ABC中,若向量AB*向量BC+向量AB的平方=0,则三角形ABC是什么三角形?

向量AB*向量BC+向量AB的平方=0向AB(向BC+向AB)=0向AB·向AC=0三角形ABC是直角三角形

在三角形ABC中,若AD=DB=DC,求证三角形ABC为直角三角形.

再答:回答如果满意的话,请点击右上角的满意回答哦

在三角形ABC中,AC=BC,

延长BE交AC的延长线于F∵∠BFC+∠DAC=90°,∠BFC+∠CBF=90°∴∠DAC=∠CBF在⊿BCF,⊿ACD中∠DAC=∠CBF,AC=BC,∠ACD=∠BCF=90°∴⊿BCF≌⊿AC

“在三角形ABC中,若sinA=cosB,则三角形ABC是直角三角形.”为什么错?

反例:A=120,B=30,则sinA=cosB=sin60,此三角形显然不是直角三角形

在三角形ABC中,AB=AC,

证明:因为AB=AC,所以三角形ABC是等腰三角形;由

在三角形ABC中,若acosB=bcosA,判断三角形ABC的形状.

acosB=bcosA,由正弦定理可得:sinAcosB=sinBcosA,即sinAcosB-cosAsinB=sin(A-B)=0,正弦的差公式又-π<A-B<π,∴A-B=0,即A=B,∴a=b

在三角形ABC中,若2cosBsinA=sinC,则三角形ABC的形状是什么?

解题同上.分析你的思考中的错误:2cosBsinA=2cosAsinA=sin2A=sinC则:2A=C或2A=180-C,要考虑到两者,所以不一定是等腰直角三角形,只要是等腰三角形就可以了.

在三角形ABC中,若AC=bc=ca=a,三角形abc面积

三角形的面积=4分之根号3a²再问:亲,咱写点过程,好吗,谢啦。再答:边长是a,高与边长在一个直角三角形内,两个锐角分别是30°和60°,所以高是4分之根号3a所以面积是4分之根号3a

在三角形ABC中,若a2+b2=c2,证明三角形ABC是直角三角形

当三角形为直角三角形时由面积法c^2=4*a*b/2+(b-a)^2=a^2+b^2即:在直角三角形中有c^2=a^2+b^2现在要反过来看是否成立,即:c^2=a^2+b^2要推出:直角三角形?c^

在三角形ABC中,若a2+b2=c2,证明三角形ABC是直角三角形,

cosC=(a2+b2-c2)/2absinC由题意得a2+b2-c2=0即cosC=0又因为在三角形中所以0

在三角形ABC中,若sin2A=sin2B,则三角形ABC的形状为

因为sin(2A)=sin(π-2A)所以2B=π-2A得2B+2A=π

在三角形ABC中,若cos2A+cos2B+cos2C=-1,试判断三角形ABC的形状?

由正弦定理得a/sinA=b/sinB,因为acosA=bcosB,所以sinAcosB-cosAsinB=sin(A-B)=0,所以∠A=∠B.cos2A+cos2B-cos2C=2cos2A-co

在三角形ABC中,若cosB/cosA=a/b,则三角形ABC的形状是?

∵cosB/cosA=a/b又:根据正弦定理:a/b=sinA/sinB∴cosB/cosA=sinA/sinB∴cosAsinA=cosBsinB∴2sinAcosA=2sinBcosB∴sin2A

在三角形ABC中,

已知,AD=AC,BE=BC,可得:∠ADC=∠ACD,∠BEC=∠BCE,即有:∠EDC=∠ACD=∠ACE+∠ECD,∠DEC=∠BCE=∠BCD+∠ECD,∠ECD=180°-(∠EDC+∠DE

在三角形ABC中

解题思路:根据题意,由正弦定理和余弦定理可求解题过程:见附件最终答案:略