在三角形ABC中点D是BC边上的一点DE垂直AB
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:17:00
证明:在ND的延长线上取点G,使ND=GD,连接BG、MG∵D为BC的中点∴BD=CD∵ND=GD,∠BDG=∠CDN∴△BDG≌△CDN(SAS)∴BG=CN∵在△BGM中:BM+BG>MG∴BM+
把图片字母换了一下,不影响结果.延长DE至E'点,使得DE'=DE容易证明三角形BDE’ 和三角形ADE全等.容易得到 三角形ADE+三角形BDF的面积=三角形BD
(1)AE=ED,AF∥BC,∴AF/BD=AE/ED=1,∴AF=BD,又AF=DC,∴BD=DC,即D是BC的中点.(2)四边形ADCF是矩形.事实上,AF∥=DC,∴四边形ADCF是平行四边形,
我回答,涅劳斯(Menelaus)定理是由古希腊数学家梅涅劳斯首先证明的.它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/E
证:延长AD至E点,使得DE=AD,连接BE.BD=CD,AD=ED,∠BDE=∠CDA,所以△BDE与△CDA全等,可得BE=AC.在三角形ABE中,AB+BE>AE,即AB+AC>2AD,所以AD
DE、EF都是中位线,DE=EF=BF=BD=BC/2=BA/2四边相等且相互平行,四边形BDEF为菱形.
六分之一三角形DEF中,EF当成底,是AC的三分之一,D是中点,三角形DEF的高是三角形ABC(AC为底)的一半,所以是三分之一乘二分之一等于六分之一
Sabc=BCxhSdec=DCxh’h’/h=EC/AC=2/3BC/DC=2所以面积是ABC的1/3
连接df,de,因为三角形bfc和三角形bec都是直角三角形,且d是斜边bc上的中点所以df=2分之1bc=de又mf=me,dm=dm所以三角形dmf全等于三角形dme所以∠dmf=90所以垂直
是这个问题吗?(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.
△CDE=1╱2△BEC△BEC=2╱3△ABC所以△CDE=1╱3△ABC
因为AF平行于BC而且AE=ED,所以BE=EF四边形ABDF为平行四边形AF=BDAF=DCBD=DCD是BC中点.
图能大些马再问:再答:֤������Ϊ��db��bc���ԣ������dbc�ǵ�������Ρ���Ϊ����e��cd���е㣬���ԣ�be��ֱ��ac����������εױߵ����ߴ
1.证明:∵∠ACB=90°∴AC⊥BC∵BF⊥CE∴∠ACE=∠CBG∵∠AEC=∠ADC+∠DCE=90°+∠DCE,∠BGC=∠GFC+∠DCE=90°+∠DCE∴∠AEC=∠BGC∵AC=BC
延长CD到E,使DE=CD,连接AE∴CE=2CD∵AD=BDED=CD∴△ADE和△BDC关于点D成中心对称∴AE=BC=6在△ACE中∵AE-AC<CE<AE+AC∴2<2CD<10∴1<CD<5
位置关系:AD⊥BC,这里有一个定理:等腰三角形底边上的中线垂直于底边.见百科中关于等腰三角形的性质介绍:
望采纳1/3S△ABC/S△EFC=AC*BC/DC*EC
1.证明:∵∠ACB=90°∴AC⊥BC∵BF⊥CE∴∠ACE=∠CBG∵∠AEC=∠ADC+∠DCE=90°+∠DCE,∠BGC=∠GFC+∠DCE=90°+∠DCE∴∠AEC=∠BGC∵AC=BC
∵D、E是AB,BC的中点∴DE//FC∵D,F是AB,AC的中点∴DF‖EC所以四边形CEDF是平行四边形又∵角C是直角∴四边形CEDF是矩形