在三角形abc中sina=0.64
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 20:23:41
正弦定理:a/sinA=b/sinB=c/sinC--->a:b:c=sinA:sinB:sinC=2:3:4,令a=2k,b=3k,c=4k.则cosC=(a^2+b^2-c^2)/(2ab)=(2
由正弦定理,a/sinA=b/sinB=c/sinC=2R,得sinA=a/2R,sinB=b/2R,sinC=c/2R从而由sin²A=sin²B+sin²C,得a
.在三角形ABC中,若sinA=(sinB+sinC)/(cosB+cosC),判断三角形ABC的形状.:∵sinA=(sinB+sinC)/(cosB+cosC)∴sinA-(sinB+sinC)/
由(sinA+sinB)/sinC=(a+b)/c=cosA+cosB=(b^2+c^2-a^2)/2bc+(a^2+c^2-b^2)/2ac得:a^3+b^3+a^2b+ab^2-ac^2-bc^2
sinA+cosA=1/5(sinA+cosA)^2=1/25=1+2sinAcosA2sinAcosA=-24/25(sinA-cosA)^2=1-2sinAcosA=49/25sinA-cosA=
因为sinA^2=1/2所以cosA=(b^2+c^2-a^2)/2bc>=1/2所以0再问:三口
sinB+sinc=√2sinA,而用a/sinA=b/sinb=c/sinc=2R.代入得到b+c=√2a,a+b+c=√2+1.得a=1三角形ABC面积为1/6*sinA.知道bc=1/3有知道b
反例:A=120,B=30,则sinA=cosB=sin60,此三角形显然不是直角三角形
120°利用前两个比例:5(sinB+sinC)=4(sinC+sinA)化简得到sinC=4sinA-5sinB利用后两个比例:6(sinC+sinA)=5(sinA+sinB)化简得到sinA=5
∵A+B+C=π,即A=π-(B+C),∴sinA=sin(B+C)=sinBcosC+cosBsinC,又sinA=2cosBsinC,∴sinBcosC+cosBsinC=2cosBsinC,变形
亲,这道题不难哟~应该学会做的哟~再问:��Ȼ��Ҫ�IJ������ֽⷨ������ⷨ������ȷ����������...
(sinA)^2+(cosA)^2=1
在三角形ABC中sinA=sin(B+C)所以sinA+cosB=根2/2即sin(B+C)+cosB=根2/2由AC=b=2AB=c=3以及正弦定理a/SinA=b/SinB=c/SinC可知3*s
分析:首先由条件sinA平方=sinB平方+sinC平方及正弦定理及勾股定理可推得A=90°,再根据另一条件知△ABC必定是特殊的直角三角形.由sinA平方=sinB平方+sinC平方,利用正弦定理得
sinA=cosB,A+B=90C=90c^2=a^2+b^2=2ab(a-b)^2=0a=bA=B=45a/sinA=6=b/sinBa=6sinAb=6sinBS=ab/2=18sinAsinB=
sinA=sin(A+B)所以有2sin(B+C)*(cosB+cosC)=sinB+sinC2(sinB*cosC+csB*sinC)*(cosB+cosC)=sinB+sinC化解得sin(B+2
由正弦定理,a/sinA=b/sinB=c/sinC=2R,得sinA=a/2R,sinB=b/2R,sinC=c/2R从而由sin²A=sin²B+sin²C,得a
解由sinC=(sinA+sinB)/(cosA+cosB)即sinA+sinB=sinCcosA+sinCcosB即sin(B+C)+sin(A+C)=sinCcosA+sinCcosB即sinBc
由sinA+cosA=1/2,(1)sin²A+cos²A=1(2)(1)两边平方:sin²A+2sinAcosA+cos²A=1/4,将(2)代入:sinAc
sinA=3/5,sinA+cosA0c=2