在三角形abc中cosa^二分之A=2c分之b c 则三角形ABC的形状为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 15:07:24
由(sinA+sinB)/sinC=(a+b)/c=cosA+cosB=(b^2+c^2-a^2)/2bc+(a^2+c^2-b^2)/2ac得:a^3+b^3+a^2b+ab^2-ac^2-bc^2
sinA+cosA=1/5(sinA+cosA)^2=1/25=1+2sinAcosA2sinAcosA=-24/25(sinA-cosA)^2=1-2sinAcosA=49/25sinA-cosA=
由cosA/cosB=a/b得:a/cosA=b/cosB,∵a/sinA=b/sinB相除得:tanA=tanB,∴A=B,三角形是等腰三角形.
根据非负性cosA—二分之一=0tanB—三分之根号3=0∴cosA=1/2∠A=60°tanB=√3/3∠B=30°∴∠C=90°
(√3b-c)cosA=acosC(√3sinB-sinC)cosA=sinAcosC√3sinBcosA=sinAcosC+sinCcosA√3sinBcosA=sin(A+C)√3sinBcosA
正弦定理a/sinA=b/sinB=>a/b=sinA/sinBa*cosA=b*cosB=>a/b=cosB/cosA则cosB/cosA=sinA/sinB即sinAcosA-cosBsinB=0
D如果是锐角每个角的正弦余弦都会是正的直径则会等于0只有是钝角时,会出现负值
(sinA)^2+(cosA)^2=1
C=180度-(A+B),cosC=cos[180^-(A+B)]=-cos(A+B)=-cosAcosB+sinAsinB2cosAcosB+cosC=12cosAcosB-cosAcosB+sin
(√3×b-c)cosA=acosC根据正弦定理(√3sinB-sinC)cosA=sinAcosC∴√3sinBcosA=sinAcosC+cosAsinC=sin(A+C)=sinB∵sinB>0
因为tan[(A+C)/2]=tan(A/2+C/2)=[tan(A/2)+tan(C/2)]/[1-tan(A/2)tan(C/2)]所以tan(A/2)+tan(C/2)=tan[(A+C)/2]
解由sinC=(sinA+sinB)/(cosA+cosB)即sinA+sinB=sinCcosA+sinCcosB即sin(B+C)+sin(A+C)=sinCcosA+sinCcosB即sinBc
(cosA+2cosC)/(cosA+2cosB)=sinB/sinCcosAsinC+2sinCcosC=cosAsinB+2sinBcosBcosAsinC+sin2C=cosAsinB+sin2
题目应该是这样子吧:证明:在锐角三角形ABC中,cosA90°,∴B>90°-A,A>90°-B,正弦函数在(0°,90°)上是增函数,所以sinB>sin(90°-A),sinA>sin(90°-B
∵cosB/cosA=a/b又:根据正弦定理:a/b=sinA/sinB∴cosB/cosA=sinA/sinB∴cosAsinA=cosBsinB∴2sinAcosA=2sinBcosB∴sin2A
B+C=180-ACOS(180-A)=-COSA诱导公式
由sinA+cosA=1/2,(1)sin²A+cos²A=1(2)(1)两边平方:sin²A+2sinAcosA+cos²A=1/4,将(2)代入:sinAc
设在三角形ABC中,三边分别为a,b,c 由题意得 2accosB=3abcosC① 2bccosA=abcosC② &nb