在三角形abc中bc=a ca=b ab=c 角bac=120
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 11:13:19
由sinC=2sinA得AB=2BC=2V5,有余弦定理的cosC=(5+9-20)/6V5=-V5/5.则sinC=2V5/5所以S=1/2X3XV5Xsinc=3
^2+c^2-a^2+bc=0b^2+c^2-a^2=-bccosA=(b^2+c^2-a^2)/2bc=-bc/2bc=-1/2A=120度三角形为钝角三角形
1、DC=BC,角BCD=60度,所以三角形BCD为等边三角形三角形C'BD与三角形ABC中BD=BC,BC'=BA,角C'BD=角ABC,三角形C'BD与三角形ABC
这个是等腰三角形,做BC边上的高(也就是中线)AD,则BD=CD=7AD=√(AB^2-BD^2)=24所以Sabc=1/2AD*BC=168
过点A做BC边垂线,交于H,因为三角形是等腰三角形,所以BH=2分之1BC也就是8了,再根据勾股定理可以求出来AH等于15,然后三角形就等于15乘16再除2结果120..
过A作AD⊥BC于D因为是等腰三角形,所以BD=1/2BC=1/2*4=2由勾股定理得:AD=√(AB^2-BD^2)=√(6^2-2^2)=4√2所以三角形的面积是:1/2*BC*AD=1/2*4√
/>|向量BA+向量BC|=|向量AC|∴|向量BA+向量BC|=|向量AB+向量BC|∴|向量BC-向量AB|=|向量BC+向量AB|∴|向量BC-向量AB|²=|向量BC+向量AB|
向量AB*向量BC+向量AB的平方=0向AB(向BC+向AB)=0向AB·向AC=0三角形ABC是直角三角形
延长BE交AC的延长线于F∵∠BFC+∠DAC=90°,∠BFC+∠CBF=90°∴∠DAC=∠CBF在⊿BCF,⊿ACD中∠DAC=∠CBF,AC=BC,∠ACD=∠BCF=90°∴⊿BCF≌⊿AC
“数理答疑团”为您解答,希望对你有所帮助.证明:BA=BC,∠ABC=∠DBE,∠ABC+∠DBC=∠DBE+∠DBC,则:∠ABD=∠CBE,BD=BE,所以:△ABD≌△CBE(SAS)手机提问的
证明:∵DF//AC∴⊿BAC∽⊿BDF∴AC:DF=BC:DF∵DE//BC,DF//AC∴四边形DFCE是平行四边形∴DF=EC∴AC:EC=BC:BF
三角形的面积=4分之根号3a²再问:亲,咱写点过程,好吗,谢啦。再答:边长是a,高与边长在一个直角三角形内,两个锐角分别是30°和60°,所以高是4分之根号3a所以面积是4分之根号3a
E在什么位置?按照这个图形,AE可以等于CE的当A1B与AC垂直的时候,就可以相等的
过A点做垂线与CB的垂足为Hcosm解得为3/5设AH=x则DB=x-1接着解三角形ADH就可以了
因为DE平行于BC,所以角ADE等于角B因为BC=AC,所以角A=角B所以角ADE=角B=角A,即角ADE=角A,所以AE=DE,所以三角形ADE是等腰三角形
做EG平行于AC,交BC于G设三角形CEF面积=a,设BG/GC=k那么可求出CF/AF=kCEG面积=CEF面积=aBEG面积=k×CEG面积=kaAEF面积=CEF面积/k=a/kAEF面积=BC
证明:∵BC是AC和BD的比例中项∴AC:BC=BC:BD又∵∠ABC=∠CDB=90º∴Rt⊿ABC∽Rt⊿CDB(HL)
解题思路:本题考查了勾股定理,解决本题的关键在于利用两个直角三角形的公共边找到突破点解题过程:附件最终答案:略
证明:如图过C做CG垂直AB的延长线于G,过F做FH垂直DE的延长线于H∵∠ABC=∠DEF
相等,延长BE,过A做AG平行于BC交BE于G,延长GA,过B做BH垂直GA于H.在直角三角形BEF中BE=2EF所以∠EBF=30度,AG平行BC,所以∠AGB=∠EBF=30度,所以在三角形BGH